File size: 8,609 Bytes
fc49e89 fda50b3 396c25c a2c4296 fda50b3 a2c4296 fda50b3 fc49e89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# import spaces
import os
import re
import time
import gradio as gr
import torch
from transformers import AutoModelForCausalLM
from transformers import TextIteratorStreamer
from threading import Thread
import importlib.metadata
from packaging import version
from transformers.utils.import_utils import (
is_torch_available,
_is_package_available,
is_torch_mlu_available
)
def diagnose_flash_attn_2_availability():
if not is_torch_available():
return "PyTorch is not available."
if not _is_package_available("flash_attn"):
return "flash_attn package is not installed."
import torch
if not (torch.cuda.is_available() or is_torch_mlu_available()):
return "Neither CUDA nor MLU is available."
flash_attn_version = importlib.metadata.version("flash_attn")
if torch.version.cuda:
required_version = "2.1.0"
if version.parse(flash_attn_version) < version.parse(required_version):
return f"CUDA is available, but flash_attn version {flash_attn_version} is installed. Version >= {required_version} is required."
elif torch.version.hip:
required_version = "2.0.4"
if version.parse(flash_attn_version) < version.parse(required_version):
return f"HIP is available, but flash_attn version {flash_attn_version} is installed. Version >= {required_version} is required."
elif is_torch_mlu_available():
required_version = "2.3.3"
if version.parse(flash_attn_version) < version.parse(required_version):
return f"MLU is available, but flash_attn version {flash_attn_version} is installed. Version >= {required_version} is required."
else:
return "Unknown PyTorch backend."
return "All requirements for Flash Attention 2 are met."
# 使用诊断函数
result = diagnose_flash_attn_2_availability()
if result != "All requirements for Flash Attention 2 are met.":
print(f"Flash Attention 2 is not available: {result}")
print("Using `flash_attention_2` requires having the correct version of `flash_attn` installed.")
else:
print("Flash Attention 2 can be used.")
model_name = 'AIDC-AI/Ovis2-16B'
# load model
model = AutoModelForCausalLM.from_pretrained(model_name,
torch_dtype=torch.bfloat16,
multimodal_max_length=8192,
trust_remote_code=True).to(device='cuda')
text_tokenizer = model.get_text_tokenizer()
visual_tokenizer = model.get_visual_tokenizer()
streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True)
image_placeholder = '<image>'
cur_dir = os.path.dirname(os.path.abspath(__file__))
def submit_chat(chatbot, text_input):
response = ''
chatbot.append((text_input, response))
return chatbot ,''
@spaces.GPU
def ovis_chat(chatbot, image_input):
# preprocess inputs
conversations = [{
"from": "system",
"value": "You are Ovis, a multimodal large language model developed by Alibaba International, and your task is to provide reliable and structured responses to users. 你是Ovis,由阿里国际研发的多模态大模型,你的任务是为用户提供可靠、结构化的回复。"
}]
response = ""
text_input = chatbot[-1][0]
for query, response in chatbot[:-1]:
conversations.append({
"from": "human",
"value": query
})
conversations.append({
"from": "gpt",
"value": response
})
text_input = text_input.replace(image_placeholder, '')
conversations.append({
"from": "human",
"value": text_input
})
if image_input is not None:
conversations[0]["value"] = image_placeholder + '\n' + conversations[0]["value"]
prompt, input_ids, pixel_values = model.preprocess_inputs(conversations, [image_input])
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
input_ids = input_ids.unsqueeze(0).to(device=model.device)
attention_mask = attention_mask.unsqueeze(0).to(device=model.device)
if image_input is None:
pixel_values = [None]
else:
pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]
with torch.inference_mode():
gen_kwargs = dict(
max_new_tokens=1536,
do_sample=False,
top_p=None,
top_k=None,
temperature=None,
repetition_penalty=None,
eos_token_id=model.generation_config.eos_token_id,
pad_token_id=text_tokenizer.pad_token_id,
use_cache=True
)
response = ""
thread = Thread(target=model.generate,
kwargs={"inputs": input_ids,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"streamer": streamer,
**gen_kwargs})
thread.start()
for new_text in streamer:
response += new_text
chatbot[-1][1] = response
yield chatbot
thread.join()
# debug
print('*'*60)
print('*'*60)
print('OVIS_CONV_START')
for i, (request, answer) in enumerate(chatbot[:-1], 1):
print(f'Q{i}:\n {request}')
print(f'A{i}:\n {answer}')
print('New_Q:\n', text_input)
print('New_A:\n', response)
print('OVIS_CONV_END')
def clear_chat():
return [], None, ""
with open(f"{cur_dir}/resource/logo.svg", "r", encoding="utf-8") as svg_file:
svg_content = svg_file.read()
font_size = "2.5em"
svg_content = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content)
html = f"""
<p align="center" style="font-size: {font_size}; line-height: 1;">
<span style="display: inline-block; vertical-align: middle;">{svg_content}</span>
<span style="display: inline-block; vertical-align: middle;">{model_name.split('/')[-1]}</span>
</p>
<center><font size=3><b>Ovis</b> has been open-sourced on <a href='https://huggingface.co/{model_name}'>😊 Huggingface</a> and <a href='https://github.com/AIDC-AI/Ovis'>🌟 GitHub</a>. If you find Ovis useful, a like❤️ or a star🌟 would be appreciated.</font></center>
"""
latex_delimiters_set = [{
"left": "\\(",
"right": "\\)",
"display": True
}, {
"left": "\\begin{equation}",
"right": "\\end{equation}",
"display": True
}, {
"left": "\\begin{align}",
"right": "\\end{align}",
"display": True
}, {
"left": "\\begin{alignat}",
"right": "\\end{alignat}",
"display": True
}, {
"left": "\\begin{gather}",
"right": "\\end{gather}",
"display": True
}, {
"left": "\\begin{CD}",
"right": "\\end{CD}",
"display": True
}, {
"left": "\\[",
"right": "\\]",
"display": True
}]
text_input = gr.Textbox(label="prompt", placeholder="Enter your text here...", lines=1, container=False)
with gr.Blocks(title=model_name.split('/')[-1], theme=gr.themes.Ocean()) as demo:
gr.HTML(html)
with gr.Row():
with gr.Column(scale=3):
image_input = gr.Image(label="image", height=350, type="pil")
gr.Examples(
examples=[
[f"{cur_dir}/examples/case0.png", "Find the area of the shaded region."],
[f"{cur_dir}/examples/case1.png", "explain this model to me."],
[f"{cur_dir}/examples/case2.png", "What is net profit margin as a percentage of total revenue?"],
],
inputs=[image_input, text_input]
)
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="Ovis", layout="panel", height=600, show_copy_button=True, latex_delimiters=latex_delimiters_set)
text_input.render()
with gr.Row():
send_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
send_click_event = send_btn.click(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot)
submit_event = text_input.submit(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot)
clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input])
demo.launch()
|