File size: 8,609 Bytes
fc49e89
 
 
 
 
 
 
 
 
 
fda50b3
 
396c25c
a2c4296
 
 
 
fda50b3
a2c4296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fda50b3
 
 
fc49e89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# import spaces
import os
import re
import time
import gradio as gr
import torch
from transformers import AutoModelForCausalLM
from transformers import TextIteratorStreamer
from threading import Thread

import importlib.metadata
from packaging import version
from transformers.utils.import_utils import (
    is_torch_available,
    _is_package_available,
    is_torch_mlu_available
)

def diagnose_flash_attn_2_availability():
    if not is_torch_available():
        return "PyTorch is not available."

    if not _is_package_available("flash_attn"):
        return "flash_attn package is not installed."

    import torch

    if not (torch.cuda.is_available() or is_torch_mlu_available()):
        return "Neither CUDA nor MLU is available."

    flash_attn_version = importlib.metadata.version("flash_attn")

    if torch.version.cuda:
        required_version = "2.1.0"
        if version.parse(flash_attn_version) < version.parse(required_version):
            return f"CUDA is available, but flash_attn version {flash_attn_version} is installed. Version >= {required_version} is required."
    elif torch.version.hip:
        required_version = "2.0.4"
        if version.parse(flash_attn_version) < version.parse(required_version):
            return f"HIP is available, but flash_attn version {flash_attn_version} is installed. Version >= {required_version} is required."
    elif is_torch_mlu_available():
        required_version = "2.3.3"
        if version.parse(flash_attn_version) < version.parse(required_version):
            return f"MLU is available, but flash_attn version {flash_attn_version} is installed. Version >= {required_version} is required."
    else:
        return "Unknown PyTorch backend."

    return "All requirements for Flash Attention 2 are met."

# 使用诊断函数
result = diagnose_flash_attn_2_availability()
if result != "All requirements for Flash Attention 2 are met.":
    print(f"Flash Attention 2 is not available: {result}")
    print("Using `flash_attention_2` requires having the correct version of `flash_attn` installed.")
else:
    print("Flash Attention 2 can be used.")

model_name = 'AIDC-AI/Ovis2-16B'

# load model
model = AutoModelForCausalLM.from_pretrained(model_name,
                                             torch_dtype=torch.bfloat16,
                                             multimodal_max_length=8192,
                                             trust_remote_code=True).to(device='cuda')
text_tokenizer = model.get_text_tokenizer()
visual_tokenizer = model.get_visual_tokenizer()
streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True)
image_placeholder = '<image>'
cur_dir = os.path.dirname(os.path.abspath(__file__))

def submit_chat(chatbot, text_input):
    response = ''
    chatbot.append((text_input, response))
    return chatbot ,''

@spaces.GPU
def ovis_chat(chatbot, image_input):
    # preprocess inputs
    conversations = [{
        "from": "system",
        "value": "You are Ovis, a multimodal large language model developed by Alibaba International, and your task is to provide reliable and structured responses to users. 你是Ovis,由阿里国际研发的多模态大模型,你的任务是为用户提供可靠、结构化的回复。"
    }]
    response = ""
    text_input = chatbot[-1][0]
    for query, response in chatbot[:-1]:
        conversations.append({
            "from": "human",
            "value": query
        })
        conversations.append({
            "from": "gpt",
            "value": response
        })
    text_input = text_input.replace(image_placeholder, '')
    conversations.append({
        "from": "human",
        "value": text_input
    })
    if image_input is not None:
        conversations[0]["value"] = image_placeholder + '\n' + conversations[0]["value"]
    prompt, input_ids, pixel_values = model.preprocess_inputs(conversations, [image_input])
    attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
    input_ids = input_ids.unsqueeze(0).to(device=model.device)
    attention_mask = attention_mask.unsqueeze(0).to(device=model.device)
    if image_input is None:
        pixel_values = [None]
    else:
        pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]

    with torch.inference_mode():
        gen_kwargs = dict(
            max_new_tokens=1536,
            do_sample=False,
            top_p=None,
            top_k=None,
            temperature=None,
            repetition_penalty=None,
            eos_token_id=model.generation_config.eos_token_id,
            pad_token_id=text_tokenizer.pad_token_id,
            use_cache=True
        )
        response = ""
        thread = Thread(target=model.generate, 
                    kwargs={"inputs": input_ids,
                            "pixel_values": pixel_values,
                            "attention_mask": attention_mask,
                            "streamer": streamer,
                            **gen_kwargs})
        thread.start()
        for new_text in streamer:
            response += new_text
            chatbot[-1][1] = response
            yield chatbot
        thread.join()
        # debug
        print('*'*60)
        print('*'*60)
        print('OVIS_CONV_START')
        for i, (request, answer) in enumerate(chatbot[:-1], 1):
            print(f'Q{i}:\n {request}')
            print(f'A{i}:\n {answer}')
        print('New_Q:\n', text_input)
        print('New_A:\n', response)
        print('OVIS_CONV_END')

def clear_chat():
    return [], None, ""

with open(f"{cur_dir}/resource/logo.svg", "r", encoding="utf-8") as svg_file:
    svg_content = svg_file.read()
font_size = "2.5em"
svg_content = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content)
html = f"""
<p align="center" style="font-size: {font_size}; line-height: 1;">
    <span style="display: inline-block; vertical-align: middle;">{svg_content}</span>
    <span style="display: inline-block; vertical-align: middle;">{model_name.split('/')[-1]}</span>
</p>
<center><font size=3><b>Ovis</b> has been open-sourced on <a href='https://huggingface.co/{model_name}'>😊 Huggingface</a> and <a href='https://github.com/AIDC-AI/Ovis'>🌟 GitHub</a>. If you find Ovis useful, a like❤️ or a star🌟 would be appreciated.</font></center>
"""

latex_delimiters_set = [{
        "left": "\\(",
        "right": "\\)",
        "display": True 
    }, {
        "left": "\\begin{equation}",
        "right": "\\end{equation}",
        "display": True 
    }, {
        "left": "\\begin{align}",
        "right": "\\end{align}",
        "display": True
    }, {
        "left": "\\begin{alignat}",
        "right": "\\end{alignat}",
        "display": True
    }, {
        "left": "\\begin{gather}",
        "right": "\\end{gather}",
        "display": True
    }, {
        "left": "\\begin{CD}",
        "right": "\\end{CD}",
        "display": True
    }, {
        "left": "\\[",
        "right": "\\]",
        "display": True
    }]

text_input = gr.Textbox(label="prompt", placeholder="Enter your text here...", lines=1, container=False)
with gr.Blocks(title=model_name.split('/')[-1], theme=gr.themes.Ocean()) as demo:
    gr.HTML(html)
    with gr.Row():
        with gr.Column(scale=3):
            image_input = gr.Image(label="image", height=350, type="pil")
            gr.Examples(
                examples=[
                    [f"{cur_dir}/examples/case0.png", "Find the area of the shaded region."],
                    [f"{cur_dir}/examples/case1.png", "explain this model to me."],
                    [f"{cur_dir}/examples/case2.png", "What is net profit margin as a percentage of total revenue?"],
                ],
                inputs=[image_input, text_input]
            )
        with gr.Column(scale=7):
            chatbot = gr.Chatbot(label="Ovis", layout="panel", height=600, show_copy_button=True, latex_delimiters=latex_delimiters_set)
            text_input.render()
            with gr.Row():
                send_btn = gr.Button("Send", variant="primary")
                clear_btn = gr.Button("Clear", variant="secondary")

    send_click_event = send_btn.click(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot)
    submit_event = text_input.submit(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot)
    clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input])

demo.launch()