Update app.py
Browse files
app.py
CHANGED
@@ -11,10 +11,18 @@ from threading import Thread
|
|
11 |
import torch
|
12 |
import gradio as gr
|
13 |
from transformers import AutoModelForCausalLM, TextIteratorStreamer
|
|
|
|
|
14 |
|
15 |
model_name = 'AIDC-AI/Ovis2-16B'
|
|
|
16 |
use_thread = False
|
17 |
|
|
|
|
|
|
|
|
|
|
|
18 |
# load model
|
19 |
model = AutoModelForCausalLM.from_pretrained(model_name,
|
20 |
torch_dtype=torch.bfloat16,
|
@@ -49,8 +57,8 @@ def submit_chat(chatbot, text_input):
|
|
49 |
return chatbot ,''
|
50 |
|
51 |
@spaces.GPU
|
52 |
-
def ovis_chat(chatbot: List[List[str]], image_input: Any):
|
53 |
-
conversations, model_inputs = prepare_inputs(chatbot, image_input)
|
54 |
gen_kwargs = initialize_gen_kwargs()
|
55 |
|
56 |
with torch.inference_mode():
|
@@ -74,7 +82,7 @@ def ovis_chat(chatbot: List[List[str]], image_input: Any):
|
|
74 |
log_conversation(chatbot)
|
75 |
|
76 |
|
77 |
-
def prepare_inputs(chatbot: List[List[str]], image_input: Any):
|
78 |
# conversations = [{
|
79 |
# "from": "system",
|
80 |
# "value": "You are a helpful assistant, and your task is to provide reliable and structured responses to users."
|
@@ -95,10 +103,30 @@ def prepare_inputs(chatbot: List[List[str]], image_input: Any):
|
|
95 |
if conv["from"] == "human":
|
96 |
conv["value"] = f'{image_placeholder}\n{conv["value"]}'
|
97 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
logger.info(conversations)
|
100 |
|
101 |
-
prompt, input_ids, pixel_values = model.preprocess_inputs(conversations,
|
102 |
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
|
103 |
|
104 |
model_inputs = {
|
@@ -115,7 +143,7 @@ def log_conversation(chatbot):
|
|
115 |
logger.info("[OVIS_CONV_END]")
|
116 |
|
117 |
def clear_chat():
|
118 |
-
return [], None, ""
|
119 |
|
120 |
with open(f"{cur_dir}/resource/logo.svg", "r", encoding="utf-8") as svg_file:
|
121 |
svg_content = svg_file.read()
|
@@ -164,26 +192,58 @@ with gr.Blocks(title=model_name.split('/')[-1], theme=gr.themes.Ocean()) as demo
|
|
164 |
gr.HTML(html)
|
165 |
with gr.Row():
|
166 |
with gr.Column(scale=3):
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
[
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
with gr.Column(scale=7):
|
179 |
chatbot = gr.Chatbot(label="Ovis", layout="panel", height=600, show_copy_button=True, latex_delimiters=latex_delimiters_set)
|
180 |
text_input.render()
|
181 |
with gr.Row():
|
182 |
send_btn = gr.Button("Send", variant="primary")
|
183 |
clear_btn = gr.Button("Clear", variant="secondary")
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
demo.launch()
|
|
|
11 |
import torch
|
12 |
import gradio as gr
|
13 |
from transformers import AutoModelForCausalLM, TextIteratorStreamer
|
14 |
+
from moviepy.editor import VideoFileClip
|
15 |
+
from PIL import Image
|
16 |
|
17 |
model_name = 'AIDC-AI/Ovis2-16B'
|
18 |
+
|
19 |
use_thread = False
|
20 |
|
21 |
+
IMAGE_MAX_PARTITION = 16
|
22 |
+
|
23 |
+
VIDEO_FRAME_NUMS = 32
|
24 |
+
VIDEO_MAX_PARTITION = 1
|
25 |
+
|
26 |
# load model
|
27 |
model = AutoModelForCausalLM.from_pretrained(model_name,
|
28 |
torch_dtype=torch.bfloat16,
|
|
|
57 |
return chatbot ,''
|
58 |
|
59 |
@spaces.GPU
|
60 |
+
def ovis_chat(chatbot: List[List[str]], image_input: Any, video_input: Any):
|
61 |
+
conversations, model_inputs = prepare_inputs(chatbot, image_input, video_input)
|
62 |
gen_kwargs = initialize_gen_kwargs()
|
63 |
|
64 |
with torch.inference_mode():
|
|
|
82 |
log_conversation(chatbot)
|
83 |
|
84 |
|
85 |
+
def prepare_inputs(chatbot: List[List[str]], image_input: Any, video_input: Any):
|
86 |
# conversations = [{
|
87 |
# "from": "system",
|
88 |
# "value": "You are a helpful assistant, and your task is to provide reliable and structured responses to users."
|
|
|
103 |
if conv["from"] == "human":
|
104 |
conv["value"] = f'{image_placeholder}\n{conv["value"]}'
|
105 |
break
|
106 |
+
max_partition = IMAGE_MAX_PARTITION
|
107 |
+
image_input = [image_input]
|
108 |
+
|
109 |
+
if video_input is not None:
|
110 |
+
for conv in conversations:
|
111 |
+
if conv["from"] == "human":
|
112 |
+
conv["value"] = f'{image_placeholder}\n' * VIDEO_FRAME_NUMS + f'{conv["value"]}'
|
113 |
+
break
|
114 |
+
# extract video frames here
|
115 |
+
with VideoFileClip(video_input) as clip:
|
116 |
+
total_frames = int(clip.fps * clip.duration)
|
117 |
+
if total_frames <= VIDEO_FRAME_NUMS:
|
118 |
+
sampled_indices = range(total_frames)
|
119 |
+
else:
|
120 |
+
stride = total_frames / VIDEO_FRAME_NUMS
|
121 |
+
sampled_indices = [min(total_frames - 1, int((stride * i + stride * (i + 1)) / 2)) for i in range(VIDEO_FRAME_NUMS)]
|
122 |
+
frames = [clip.get_frame(index / clip.fps) for index in sampled_indices]
|
123 |
+
frames = [Image.fromarray(frame, mode='RGB') for frame in frames]
|
124 |
+
image_input = frames
|
125 |
+
max_partition = VIDEO_MAX_PARTITION
|
126 |
|
127 |
logger.info(conversations)
|
128 |
|
129 |
+
prompt, input_ids, pixel_values = model.preprocess_inputs(conversations, image_input, max_partition=max_partition)
|
130 |
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
|
131 |
|
132 |
model_inputs = {
|
|
|
143 |
logger.info("[OVIS_CONV_END]")
|
144 |
|
145 |
def clear_chat():
|
146 |
+
return [], None, "", None
|
147 |
|
148 |
with open(f"{cur_dir}/resource/logo.svg", "r", encoding="utf-8") as svg_file:
|
149 |
svg_content = svg_file.read()
|
|
|
192 |
gr.HTML(html)
|
193 |
with gr.Row():
|
194 |
with gr.Column(scale=3):
|
195 |
+
input_type = gr.Radio(choices=["image + prompt", "video + prompt"], label="Select input type:", value="image + prompt", elem_classes="my_radio")
|
196 |
+
|
197 |
+
image_input = gr.Image(label="image", height=350, type="pil", visible=True)
|
198 |
+
video_input = gr.Video(label="video", height=350, format='mp4', visible=False)
|
199 |
+
with gr.Column(visible=True) as image_examples_col:
|
200 |
+
image_examples = gr.Examples(
|
201 |
+
examples=[
|
202 |
+
[f"{cur_dir}/examples/ovis2_math0.jpg", "Each face of the polyhedron shown is either a triangle or a square. Each square borders 4 triangles, and each triangle borders 3 squares. The polyhedron has 6 squares. How many triangles does it have?\n\nProvide a step-by-step solution to the problem, and conclude with 'the answer is' followed by the final solution."],
|
203 |
+
[f"{cur_dir}/examples/ovis2_math1.jpg", "A large square touches another two squares, as shown in the picture. The numbers inside the smaller squares indicate their areas. What is the area of the largest square?\n\nProvide a step-by-step solution to the problem, and conclude with 'the answer is' followed by the final solution."],
|
204 |
+
[f"{cur_dir}/examples/ovis2_figure0.png", "Explain this model."],
|
205 |
+
[f"{cur_dir}/examples/ovis2_figure1.png", "Organize the notes about GRPO in the figure."],
|
206 |
+
[f"{cur_dir}/examples/ovis2_multi0.jpg", "Posso avere un frappuccino e un caffè americano di taglia M? Quanto costa in totale?"],
|
207 |
+
],
|
208 |
+
inputs=[image_input, text_input]
|
209 |
+
)
|
210 |
+
|
211 |
+
def update_visibility_on_example(video_input, text_input):
|
212 |
+
return (gr.update(visible=True), text_input)
|
213 |
+
|
214 |
+
with gr.Column(visible=False) as video_examples_col:
|
215 |
+
video_examples = gr.Examples(
|
216 |
+
examples=[
|
217 |
+
[f"{cur_dir}/examples/video_demo_1.mp4", "Describe the video."]
|
218 |
+
],
|
219 |
+
inputs=[video_input, text_input],
|
220 |
+
fn = update_visibility_on_example,
|
221 |
+
run_on_click = True,
|
222 |
+
outputs=[video_input, text_input]
|
223 |
+
)
|
224 |
+
|
225 |
with gr.Column(scale=7):
|
226 |
chatbot = gr.Chatbot(label="Ovis", layout="panel", height=600, show_copy_button=True, latex_delimiters=latex_delimiters_set)
|
227 |
text_input.render()
|
228 |
with gr.Row():
|
229 |
send_btn = gr.Button("Send", variant="primary")
|
230 |
clear_btn = gr.Button("Clear", variant="secondary")
|
231 |
+
|
232 |
+
def update_input_and_clear(selected):
|
233 |
+
if selected == "image + prompt":
|
234 |
+
visibility_updates = (gr.update(visible=True), gr.update(visible=False),
|
235 |
+
gr.update(visible=True), gr.update(visible=False))
|
236 |
+
else:
|
237 |
+
visibility_updates = (gr.update(visible=False), gr.update(visible=True),
|
238 |
+
gr.update(visible=False), gr.update(visible=True))
|
239 |
+
clear_chat_outputs = clear_chat()
|
240 |
+
return visibility_updates + clear_chat_outputs
|
241 |
+
|
242 |
+
input_type.change(fn=update_input_and_clear, inputs=input_type,
|
243 |
+
outputs=[image_input, video_input, image_examples_col, video_examples_col, chatbot, image_input, text_input, video_input])
|
244 |
+
|
245 |
+
send_click_event = send_btn.click(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input, video_input],chatbot)
|
246 |
+
submit_event = text_input.submit(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input, video_input],chatbot)
|
247 |
+
clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input, video_input])
|
248 |
|
249 |
demo.launch()
|