Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
subprocess.run('pip install gptqmodel', shell=True) | |
subprocess.run('pip install numpy==1.25.0', shell=True) | |
import spaces | |
import os | |
import re | |
import logging | |
from typing import List, Any | |
from threading import Thread | |
import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, TextIteratorStreamer, GenerationConfig | |
from moviepy.editor import VideoFileClip | |
from PIL import Image | |
from gptqmodel import GPTQModel | |
model_name = 'AIDC-AI/Ovis2-34B-GPTQ-Int4' | |
use_thread = False | |
IMAGE_MAX_PARTITION = 16 | |
VIDEO_FRAME_NUMS = 32 | |
VIDEO_MAX_PARTITION = 1 | |
model = GPTQModel.load(model_name, device='cuda', trust_remote_code=True) | |
model.model.generation_config = GenerationConfig.from_pretrained(model_name) | |
text_tokenizer = model.get_text_tokenizer() | |
visual_tokenizer = model.get_visual_tokenizer() | |
streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True) | |
image_placeholder = '<image>' | |
cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
logging.getLogger("httpx").setLevel(logging.WARNING) | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
def initialize_gen_kwargs(): | |
return { | |
"max_new_tokens": 1536, | |
"do_sample": False, | |
"top_p": None, | |
"top_k": None, | |
"temperature": None, | |
"repetition_penalty": 1.05, | |
"eos_token_id": model.generation_config.eos_token_id, | |
"pad_token_id": text_tokenizer.pad_token_id, | |
"use_cache": True | |
} | |
def submit_chat(chatbot, text_input): | |
response = '' | |
chatbot.append((text_input, response)) | |
return chatbot ,'' | |
def ovis_chat(chatbot: List[List[str]], image_input: Any, video_input: Any): | |
conversations, model_inputs = prepare_inputs(chatbot, image_input, video_input) | |
gen_kwargs = initialize_gen_kwargs() | |
with torch.inference_mode(): | |
generate_func = lambda: model.generate(**model_inputs, **gen_kwargs, streamer=streamer) | |
if use_thread: | |
thread = Thread(target=generate_func) | |
thread.start() | |
else: | |
generate_func() | |
response = "" | |
for new_text in streamer: | |
response += new_text | |
chatbot[-1][1] = response | |
yield chatbot | |
if use_thread: | |
thread.join() | |
log_conversation(chatbot) | |
def prepare_inputs(chatbot: List[List[str]], image_input: Any, video_input: Any): | |
# conversations = [{ | |
# "from": "system", | |
# "value": "You are a helpful assistant, and your task is to provide reliable and structured responses to users." | |
# }] | |
conversations= [] | |
for query, response in chatbot[:-1]: | |
conversations.extend([ | |
{"from": "human", "value": query}, | |
{"from": "gpt", "value": response} | |
]) | |
last_query = chatbot[-1][0].replace(image_placeholder, '') | |
conversations.append({"from": "human", "value": last_query}) | |
max_partition = IMAGE_MAX_PARTITION | |
if image_input is not None: | |
for conv in conversations: | |
if conv["from"] == "human": | |
conv["value"] = f'{image_placeholder}\n{conv["value"]}' | |
break | |
max_partition = IMAGE_MAX_PARTITION | |
image_input = [image_input] | |
if video_input is not None: | |
for conv in conversations: | |
if conv["from"] == "human": | |
conv["value"] = f'{image_placeholder}\n' * VIDEO_FRAME_NUMS + f'{conv["value"]}' | |
break | |
# extract video frames here | |
with VideoFileClip(video_input) as clip: | |
total_frames = int(clip.fps * clip.duration) | |
if total_frames <= VIDEO_FRAME_NUMS: | |
sampled_indices = range(total_frames) | |
else: | |
stride = total_frames / VIDEO_FRAME_NUMS | |
sampled_indices = [min(total_frames - 1, int((stride * i + stride * (i + 1)) / 2)) for i in range(VIDEO_FRAME_NUMS)] | |
frames = [clip.get_frame(index / clip.fps) for index in sampled_indices] | |
frames = [Image.fromarray(frame, mode='RGB') for frame in frames] | |
image_input = frames | |
max_partition = VIDEO_MAX_PARTITION | |
logger.info(conversations) | |
prompt, input_ids, pixel_values = model.preprocess_inputs(conversations, image_input, max_partition=max_partition) | |
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id) | |
model_inputs = { | |
"inputs": input_ids.unsqueeze(0).to(device=model.device), | |
"attention_mask": attention_mask.unsqueeze(0).to(device=model.device), | |
"pixel_values": [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)] if image_input is not None else [None] | |
} | |
return conversations, model_inputs | |
def log_conversation(chatbot): | |
logger.info("[OVIS_CONV_START]") | |
[print(f'Q{i}:\n {request}\nA{i}:\n {answer}') for i, (request, answer) in enumerate(chatbot, 1)] | |
logger.info("[OVIS_CONV_END]") | |
def clear_chat(): | |
return [], None, "", None | |
with open(f"{cur_dir}/resource/logo.svg", "r", encoding="utf-8") as svg_file: | |
svg_content = svg_file.read() | |
font_size = "2.5em" | |
svg_content = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content) | |
html = f""" | |
<p align="center" style="font-size: {font_size}; line-height: 1;"> | |
<span style="display: inline-block; vertical-align: middle;">{svg_content}</span> | |
<span style="display: inline-block; vertical-align: middle;">{model_name.split('/')[-1]}</span> | |
</p> | |
<center><font size=3><b>Ovis</b> has been open-sourced on <a href='https://huggingface.co/{model_name}'>😊 Huggingface</a> and <a href='https://github.com/AIDC-AI/Ovis'>🌟 GitHub</a>. If you find Ovis useful, a like❤️ or a star🌟 would be appreciated.</font></center> | |
""" | |
latex_delimiters_set = [{ | |
"left": "\\(", | |
"right": "\\)", | |
"display": False | |
}, { | |
"left": "\\begin{equation}", | |
"right": "\\end{equation}", | |
"display": True | |
}, { | |
"left": "\\begin{align}", | |
"right": "\\end{align}", | |
"display": True | |
}, { | |
"left": "\\begin{alignat}", | |
"right": "\\end{alignat}", | |
"display": True | |
}, { | |
"left": "\\begin{gather}", | |
"right": "\\end{gather}", | |
"display": True | |
}, { | |
"left": "\\begin{CD}", | |
"right": "\\end{CD}", | |
"display": True | |
}, { | |
"left": "\\[", | |
"right": "\\]", | |
"display": True | |
}] | |
text_input = gr.Textbox(label="prompt", placeholder="Enter your text here...", lines=1, container=False) | |
with gr.Blocks(title=model_name.split('/')[-1], theme=gr.themes.Ocean()) as demo: | |
gr.HTML(html) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
input_type = gr.Radio(choices=["image + prompt", "video + prompt"], label="Select input type:", value="image + prompt", elem_classes="my_radio") | |
image_input = gr.Image(label="image", height=350, type="pil", visible=True) | |
video_input = gr.Video(label="video", height=350, format='mp4', visible=False) | |
with gr.Column(visible=True) as image_examples_col: | |
image_examples = gr.Examples( | |
examples=[ | |
[f"{cur_dir}/examples/ovis2_math0.jpg", "Each face of the polyhedron shown is either a triangle or a square. Each square borders 4 triangles, and each triangle borders 3 squares. The polyhedron has 6 squares. How many triangles does it have?\n\nProvide a step-by-step solution to the problem, and conclude with 'the answer is' followed by the final solution."], | |
# [f"{cur_dir}/examples/ovis2_math1.jpg", "A large square touches another two squares, as shown in the picture. The numbers inside the smaller squares indicate their areas. What is the area of the largest square?\n\nProvide a step-by-step solution to the problem, and conclude with 'the answer is' followed by the final solution."], | |
# [f"{cur_dir}/examples/ovis2_figure0.png", "Explain this model."], | |
# [f"{cur_dir}/examples/ovis2_figure1.png", "Organize the notes about GRPO in the figure."], | |
[f"{cur_dir}/examples/ovis2_multi0.jpg", "Posso avere un frappuccino e un caffè americano di taglia M? Quanto costa in totale?"], | |
], | |
inputs=[image_input, text_input] | |
) | |
def update_visibility_on_example(video_input, text_input): | |
return (gr.update(visible=True), text_input) | |
with gr.Column(visible=False) as video_examples_col: | |
video_examples = gr.Examples( | |
examples=[ | |
[f"{cur_dir}/examples/video_demo_1.mp4", "Describe the video."] | |
], | |
inputs=[video_input, text_input], | |
fn = update_visibility_on_example, | |
run_on_click = True, | |
outputs=[video_input, text_input] | |
) | |
with gr.Column(scale=7): | |
chatbot = gr.Chatbot(label="Ovis", layout="panel", height=600, show_copy_button=True, latex_delimiters=latex_delimiters_set) | |
text_input.render() | |
with gr.Row(): | |
send_btn = gr.Button("Send", variant="primary") | |
clear_btn = gr.Button("Clear", variant="secondary") | |
def update_input_and_clear(selected): | |
if selected == "image + prompt": | |
visibility_updates = (gr.update(visible=True), gr.update(visible=False), | |
gr.update(visible=True), gr.update(visible=False)) | |
else: | |
visibility_updates = (gr.update(visible=False), gr.update(visible=True), | |
gr.update(visible=False), gr.update(visible=True)) | |
clear_chat_outputs = clear_chat() | |
return visibility_updates + clear_chat_outputs | |
input_type.change(fn=update_input_and_clear, inputs=input_type, | |
outputs=[image_input, video_input, image_examples_col, video_examples_col, chatbot, image_input, text_input, video_input]) | |
send_click_event = send_btn.click(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input, video_input],chatbot) | |
submit_event = text_input.submit(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input, video_input],chatbot) | |
clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input, video_input]) | |
demo.launch() | |