Maria Tsilimos
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -11,11 +11,11 @@ from comet_ml import Experiment
|
|
11 |
import re
|
12 |
import numpy as np
|
13 |
import json
|
14 |
-
from cryptography.fernet import Fernet
|
15 |
|
16 |
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
17 |
|
18 |
-
|
19 |
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
20 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
21 |
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
@@ -24,35 +24,51 @@ comet_initialized = False
|
|
24 |
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
|
25 |
comet_initialized = True
|
26 |
|
27 |
-
|
28 |
if 'file_upload_attempts' not in st.session_state:
|
29 |
st.session_state['file_upload_attempts'] = 0
|
30 |
|
31 |
-
|
32 |
if 'encrypted_extracted_text' not in st.session_state:
|
33 |
st.session_state['encrypted_extracted_text'] = None
|
34 |
|
35 |
-
|
36 |
if 'json_dataframe' not in st.session_state:
|
37 |
st.session_state['json_dataframe'] = None
|
38 |
|
39 |
-
max_attempts = 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|
42 |
@st.cache_resource
|
43 |
def load_ner_model():
|
44 |
-
|
|
|
|
|
|
|
45 |
try:
|
46 |
-
return pipeline(
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
50 |
except Exception as e:
|
51 |
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
52 |
st.stop()
|
53 |
|
54 |
|
55 |
-
|
56 |
@st.cache_resource
|
57 |
def load_encryption_key():
|
58 |
"""
|
@@ -65,20 +81,25 @@ def load_encryption_key():
|
|
65 |
key_str = os.environ.get("FERNET_KEY")
|
66 |
if not key_str:
|
67 |
raise ValueError("FERNET_KEY environment variable not set. Cannot perform encryption/decryption.")
|
68 |
-
|
69 |
# Fernet key must be bytes, so encode the string
|
70 |
key_bytes = key_str.encode('utf-8')
|
71 |
return Fernet(key_bytes)
|
72 |
except ValueError as ve:
|
73 |
-
st.error(
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
except Exception as e:
|
76 |
st.error(f"An unexpected error occurred while loading encryption key: {e}. Please check your key format and environment settings.")
|
77 |
st.stop()
|
78 |
|
79 |
-
# Initialize the Fernet cipher instance
|
80 |
fernet = load_encryption_key()
|
81 |
|
|
|
82 |
def encrypt_text(text_content: str) -> bytes:
|
83 |
"""
|
84 |
Encrypts a string using the loaded Fernet cipher.
|
@@ -86,6 +107,7 @@ def encrypt_text(text_content: str) -> bytes:
|
|
86 |
"""
|
87 |
return fernet.encrypt(text_content.encode('utf-8'))
|
88 |
|
|
|
89 |
def decrypt_text(encrypted_bytes: bytes) -> str | None:
|
90 |
"""
|
91 |
Decrypts bytes using the loaded Fernet cipher.
|
@@ -108,23 +130,17 @@ expander.write('''
|
|
108 |
miscellaneous”). Results are presented in an easy-to-read table, visualized in
|
109 |
an interactive tree map, pie chart, and bar chart, and are available for
|
110 |
download along with a Glossary of tags.
|
111 |
-
|
112 |
**How to Use:** Upload your JSON file. Then, click the 'Results' button
|
113 |
to extract and tag entities in your text data.
|
114 |
-
|
115 |
**Usage Limits:** You can request results up to 10 times.
|
116 |
-
|
117 |
**Language settings:** Please check and adjust the language settings in
|
118 |
your computer, so the Danish, Swedish, Norwegian, Icelandic and Faroese
|
119 |
characters are handled properly in your downloaded file.
|
120 |
-
|
121 |
**Customization:** To change the app's background color to white or
|
122 |
black, click the three-dot menu on the right-hand side of your app, go to
|
123 |
Settings and then Choose app theme, colors and fonts.
|
124 |
-
|
125 |
**Technical issues:** If your connection times out, please refresh the
|
126 |
page or reopen the app's URL.
|
127 |
-
|
128 |
For any errors or inquiries, please contact us at [email protected]
|
129 |
''')
|
130 |
|
@@ -134,11 +150,10 @@ with st.sidebar:
|
|
134 |
"extracting and tagging entities in text data. Entities can be persons, "
|
135 |
"organizations, locations, countries, products, events etc.")
|
136 |
st.subheader("Related NER Web Apps", divider="orange")
|
137 |
-
st.link_button("
|
138 |
-
"
|
139 |
type="primary")
|
140 |
|
141 |
-
|
142 |
uploaded_file = st.file_uploader("Choose a JSON file", type=["json"])
|
143 |
|
144 |
# Initialize text for the current run outside the if uploaded_file block
|
@@ -149,7 +164,7 @@ if uploaded_file is not None:
|
|
149 |
try:
|
150 |
# Read the content as bytes first, then decode for JSON parsing
|
151 |
file_contents_bytes = uploaded_file.read()
|
152 |
-
|
153 |
# Reset the file pointer after reading, so json.load can read from the beginning
|
154 |
uploaded_file.seek(0)
|
155 |
dados = json.load(uploaded_file)
|
@@ -157,19 +172,17 @@ if uploaded_file is not None:
|
|
157 |
# Attempt to convert JSON to DataFrame and extract text
|
158 |
try:
|
159 |
st.session_state['json_dataframe'] = pd.DataFrame(dados)
|
160 |
-
|
161 |
# Concatenate all content into a single string for NER
|
162 |
df_string_representation = st.session_state['json_dataframe'].to_string(index=False, header=False)
|
163 |
# Simple regex to remove non-alphanumeric characters but keep spaces and periods
|
164 |
text_content = re.sub(r'[^\w\s.]', '', df_string_representation)
|
165 |
# Remove the specific string "Empty DataFrame Columns" if it appears due to conversion
|
166 |
text_content = text_content.replace("Empty DataFrame Columns", "").strip()
|
167 |
-
current_run_text = text_content
|
168 |
-
|
169 |
-
if not current_run_text.strip(): # Check if text is effectively empty
|
170 |
st.warning("No meaningful text could be extracted from the JSON DataFrame for analysis.")
|
171 |
-
current_run_text = None
|
172 |
-
|
173 |
except ValueError:
|
174 |
# If direct conversion to DataFrame fails, try to extract strings directly from JSON structure
|
175 |
st.info("JSON data could not be directly converted to a simple DataFrame for display. Attempting to extract text directly.")
|
@@ -196,7 +209,6 @@ if uploaded_file is not None:
|
|
196 |
for sub_val in value:
|
197 |
if isinstance(sub_val, str):
|
198 |
extracted_texts_list.append(sub_val)
|
199 |
-
|
200 |
if extracted_texts_list:
|
201 |
current_run_text = " ".join(extracted_texts_list).strip()
|
202 |
else:
|
@@ -208,15 +220,13 @@ if uploaded_file is not None:
|
|
208 |
encrypted_text_bytes = encrypt_text(current_run_text)
|
209 |
st.session_state['encrypted_extracted_text'] = encrypted_text_bytes
|
210 |
# Optionally clear the unencrypted version from session state if you only want the encrypted one
|
211 |
-
# st.session_state['extracted_text_for_ner'] = None
|
212 |
-
|
213 |
st.success("JSON file uploaded successfully. File content encrypted and secured. Due to security protocols, the file content is hidden.")
|
214 |
st.divider()
|
215 |
else:
|
216 |
st.session_state['encrypted_extracted_text'] = None
|
217 |
# st.session_state['extracted_text_for_ner'] = None
|
218 |
st.error("Could not extract meaningful text from the uploaded JSON file.")
|
219 |
-
|
220 |
except json.JSONDecodeError as e:
|
221 |
st.error(f"JSON Decode Error: {e}")
|
222 |
st.error("Please ensure the uploaded file contains valid JSON data.")
|
@@ -227,10 +237,9 @@ if uploaded_file is not None:
|
|
227 |
st.session_state['encrypted_extracted_text'] = None
|
228 |
st.session_state['json_dataframe'] = None
|
229 |
|
230 |
-
|
231 |
# --- Results Button and Processing Logic ---
|
232 |
if st.button("Results"):
|
233 |
-
|
234 |
if not comet_initialized:
|
235 |
st.warning("Comet ML not initialized. Check environment variables if you wish to log data.")
|
236 |
|
@@ -242,7 +251,7 @@ if st.button("Results"):
|
|
242 |
text_for_ner = None
|
243 |
if st.session_state['encrypted_extracted_text'] is not None:
|
244 |
text_for_ner = decrypt_text(st.session_state['encrypted_extracted_text'])
|
245 |
-
|
246 |
if text_for_ner is None or not text_for_ner.strip():
|
247 |
st.warning("No extractable text content available for analysis. Please upload a valid JSON file.")
|
248 |
st.stop()
|
@@ -251,19 +260,25 @@ if st.button("Results"):
|
|
251 |
|
252 |
with st.spinner("Analyzing text...", show_time=True):
|
253 |
model = load_ner_model()
|
254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
df = pd.DataFrame(text_entities)
|
256 |
|
257 |
if 'word' in df.columns:
|
258 |
# Ensure 'word' column is string type before applying regex
|
259 |
-
if df['word'].dtype == 'object':
|
260 |
-
pattern = r'[^\w\s]'
|
261 |
df['word'] = df['word'].astype(str).replace(pattern, '', regex=True)
|
262 |
else:
|
263 |
st.warning("The 'word' column is not of string type; skipping character cleaning.")
|
264 |
else:
|
265 |
st.error("The 'word' column does not exist in the DataFrame. Cannot perform cleaning.")
|
266 |
-
st.stop()
|
267 |
|
268 |
# Replace empty strings with 'Unknown' and drop rows with NaN after cleaning
|
269 |
df = df.replace('', 'Unknown').dropna()
|
@@ -272,6 +287,11 @@ if st.button("Results"):
|
|
272 |
st.warning("No entities were extracted from the uploaded text.")
|
273 |
st.stop()
|
274 |
|
|
|
|
|
|
|
|
|
|
|
275 |
if comet_initialized:
|
276 |
experiment = Experiment(
|
277 |
api_key=COMET_API_KEY,
|
@@ -280,8 +300,11 @@ if st.button("Results"):
|
|
280 |
)
|
281 |
experiment.log_parameter("input_text_length", len(text_for_ner))
|
282 |
experiment.log_table("predicted_entities", df)
|
|
|
|
|
283 |
|
284 |
# --- Display Results ---
|
|
|
285 |
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
|
286 |
df_styled = df.style.set_properties(**properties)
|
287 |
st.dataframe(df_styled, use_container_width=True)
|
@@ -298,89 +321,90 @@ if st.button("Results"):
|
|
298 |
'**start**': ['index of the start of the corresponding entity']
|
299 |
|
300 |
'**end**': ['index of the end of the corresponding entity']
|
|
|
|
|
301 |
''')
|
302 |
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
# Loop through the entity items in chunks
|
316 |
-
for i in range(0, len(entity_items), tabs_per_row):
|
317 |
-
current_row_entities = entity_items[i : i + tabs_per_row]
|
318 |
-
tab_titles = [item[1] for item in current_row_entities]
|
319 |
-
|
320 |
-
tabs = st.tabs(tab_titles)
|
321 |
-
for j, (entity_group_key, tab_title) in enumerate(current_row_entities):
|
322 |
with tabs[j]:
|
323 |
-
|
324 |
-
|
325 |
st.dataframe(df_filtered, use_container_width=True)
|
326 |
else:
|
327 |
-
st.info(f"No '{
|
328 |
# Display an empty DataFrame for consistency if no entities are found
|
329 |
st.dataframe(pd.DataFrame({
|
330 |
-
'entity_group': [
|
331 |
'score': [np.nan],
|
332 |
'word': [np.nan],
|
333 |
'start': [np.nan],
|
334 |
-
'end': [np.nan]
|
|
|
335 |
}), hide_index=True)
|
336 |
-
|
337 |
st.divider()
|
338 |
|
339 |
# --- Visualizations ---
|
340 |
st.subheader("Tree map", divider="orange")
|
341 |
-
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'word',
|
342 |
-
|
343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
345 |
st.plotly_chart(fig_treemap)
|
346 |
if comet_initialized:
|
347 |
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
|
348 |
|
349 |
-
|
350 |
-
|
351 |
|
352 |
col1, col2 = st.columns(2)
|
353 |
with col1:
|
354 |
st.subheader("Pie Chart", divider="orange")
|
355 |
-
fig_pie = px.pie(
|
356 |
-
hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted
|
357 |
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
358 |
st.plotly_chart(fig_pie)
|
359 |
if comet_initialized:
|
360 |
-
experiment.log_figure(figure=fig_pie, figure_name="
|
361 |
|
362 |
with col2:
|
363 |
st.subheader("Bar Chart", divider="orange")
|
364 |
-
fig_bar = px.bar(
|
365 |
-
title='Occurrences of predicted
|
366 |
st.plotly_chart(fig_bar)
|
367 |
if comet_initialized:
|
368 |
-
experiment.log_figure(figure=fig_bar, figure_name="
|
369 |
|
370 |
# --- Downloadable Content ---
|
371 |
dfa = pd.DataFrame(
|
372 |
data={
|
373 |
-
'Column Name': ['word', 'entity_group','score', 'start', 'end'],
|
374 |
'Description': [
|
375 |
'entity extracted from your text data',
|
376 |
'label (tag) assigned to a given extracted entity',
|
377 |
'accuracy score; how accurately a tag has been assigned to a given entity',
|
378 |
'index of the start of the corresponding entity',
|
379 |
'index of the end of the corresponding entity',
|
|
|
380 |
]
|
381 |
}
|
382 |
)
|
383 |
-
|
384 |
buf = io.BytesIO()
|
385 |
with zipfile.ZipFile(buf, "w") as myzip:
|
386 |
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
@@ -402,7 +426,10 @@ if st.button("Results"):
|
|
402 |
st.divider()
|
403 |
if comet_initialized:
|
404 |
experiment.end()
|
405 |
-
|
406 |
-
|
407 |
-
|
|
|
|
|
408 |
st.write(f"Number of times you requested results: **{st.session_state['file_upload_attempts']}/{max_attempts}**")
|
|
|
|
11 |
import re
|
12 |
import numpy as np
|
13 |
import json
|
14 |
+
from cryptography.fernet import Fernet
|
15 |
|
16 |
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
17 |
|
18 |
+
# --- Configuration ---
|
19 |
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
20 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
21 |
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
|
|
24 |
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
|
25 |
comet_initialized = True
|
26 |
|
27 |
+
# --- Initialize session state ---
|
28 |
if 'file_upload_attempts' not in st.session_state:
|
29 |
st.session_state['file_upload_attempts'] = 0
|
30 |
|
|
|
31 |
if 'encrypted_extracted_text' not in st.session_state:
|
32 |
st.session_state['encrypted_extracted_text'] = None
|
33 |
|
|
|
34 |
if 'json_dataframe' not in st.session_state:
|
35 |
st.session_state['json_dataframe'] = None
|
36 |
|
37 |
+
max_attempts = 10
|
38 |
+
|
39 |
+
# Define the categories and their associated entity labels
|
40 |
+
ENTITY_LABELS_CATEGORIZED = {
|
41 |
+
"Persons": ["PER"],
|
42 |
+
"Locations": ["LOC"],
|
43 |
+
"Organizations": ["ORG"],
|
44 |
+
"Miscellaneous": ["MISC"],
|
45 |
+
}
|
46 |
+
|
47 |
+
# Create a mapping from each specific entity label to its category
|
48 |
+
LABEL_TO_CATEGORY_MAP = {
|
49 |
+
label: category for category, labels in ENTITY_LABELS_CATEGORIZED.items() for label in labels
|
50 |
+
}
|
51 |
|
52 |
|
53 |
@st.cache_resource
|
54 |
def load_ner_model():
|
55 |
+
"""
|
56 |
+
Loads the pre-trained NER model ("saattrupdan/nbailab-base-ner-scandi") and caches it.
|
57 |
+
This model is specifically trained for Scandinavian languages.
|
58 |
+
"""
|
59 |
try:
|
60 |
+
return pipeline(
|
61 |
+
"token-classification",
|
62 |
+
model="saattrupdan/nbailab-base-ner-scandi",
|
63 |
+
aggregation_strategy="max",
|
64 |
+
ignore_labels=["O"],
|
65 |
+
stride=128
|
66 |
+
)
|
67 |
except Exception as e:
|
68 |
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
69 |
st.stop()
|
70 |
|
71 |
|
|
|
72 |
@st.cache_resource
|
73 |
def load_encryption_key():
|
74 |
"""
|
|
|
81 |
key_str = os.environ.get("FERNET_KEY")
|
82 |
if not key_str:
|
83 |
raise ValueError("FERNET_KEY environment variable not set. Cannot perform encryption/decryption.")
|
84 |
+
|
85 |
# Fernet key must be bytes, so encode the string
|
86 |
key_bytes = key_str.encode('utf-8')
|
87 |
return Fernet(key_bytes)
|
88 |
except ValueError as ve:
|
89 |
+
st.error(
|
90 |
+
f"Configuration Error: {ve}. Please ensure the 'FERNET_KEY' environment variable is set securely "
|
91 |
+
"in your deployment environment (e.g., Hugging Face Spaces secrets, Render environment variables) "
|
92 |
+
"or in a local .env file for development."
|
93 |
+
)
|
94 |
+
st.stop() # Stop the app if the key is not found, as security is compromised
|
95 |
except Exception as e:
|
96 |
st.error(f"An unexpected error occurred while loading encryption key: {e}. Please check your key format and environment settings.")
|
97 |
st.stop()
|
98 |
|
99 |
+
# Initialize the Fernet cipher instance globally (cached)
|
100 |
fernet = load_encryption_key()
|
101 |
|
102 |
+
|
103 |
def encrypt_text(text_content: str) -> bytes:
|
104 |
"""
|
105 |
Encrypts a string using the loaded Fernet cipher.
|
|
|
107 |
"""
|
108 |
return fernet.encrypt(text_content.encode('utf-8'))
|
109 |
|
110 |
+
|
111 |
def decrypt_text(encrypted_bytes: bytes) -> str | None:
|
112 |
"""
|
113 |
Decrypts bytes using the loaded Fernet cipher.
|
|
|
130 |
miscellaneous”). Results are presented in an easy-to-read table, visualized in
|
131 |
an interactive tree map, pie chart, and bar chart, and are available for
|
132 |
download along with a Glossary of tags.
|
|
|
133 |
**How to Use:** Upload your JSON file. Then, click the 'Results' button
|
134 |
to extract and tag entities in your text data.
|
|
|
135 |
**Usage Limits:** You can request results up to 10 times.
|
|
|
136 |
**Language settings:** Please check and adjust the language settings in
|
137 |
your computer, so the Danish, Swedish, Norwegian, Icelandic and Faroese
|
138 |
characters are handled properly in your downloaded file.
|
|
|
139 |
**Customization:** To change the app's background color to white or
|
140 |
black, click the three-dot menu on the right-hand side of your app, go to
|
141 |
Settings and then Choose app theme, colors and fonts.
|
|
|
142 |
**Technical issues:** If your connection times out, please refresh the
|
143 |
page or reopen the app's URL.
|
|
|
144 |
For any errors or inquiries, please contact us at [email protected]
|
145 |
''')
|
146 |
|
|
|
150 |
"extracting and tagging entities in text data. Entities can be persons, "
|
151 |
"organizations, locations, countries, products, events etc.")
|
152 |
st.subheader("Related NER Web Apps", divider="orange")
|
153 |
+
st.link_button("Multilingual PDF & DOCX Entity Finder",
|
154 |
+
"https://nlpblogs.com/shop/named-entity-recognition-ner/multilingual-pdf-docx-entity-finder/",
|
155 |
type="primary")
|
156 |
|
|
|
157 |
uploaded_file = st.file_uploader("Choose a JSON file", type=["json"])
|
158 |
|
159 |
# Initialize text for the current run outside the if uploaded_file block
|
|
|
164 |
try:
|
165 |
# Read the content as bytes first, then decode for JSON parsing
|
166 |
file_contents_bytes = uploaded_file.read()
|
167 |
+
|
168 |
# Reset the file pointer after reading, so json.load can read from the beginning
|
169 |
uploaded_file.seek(0)
|
170 |
dados = json.load(uploaded_file)
|
|
|
172 |
# Attempt to convert JSON to DataFrame and extract text
|
173 |
try:
|
174 |
st.session_state['json_dataframe'] = pd.DataFrame(dados)
|
175 |
+
|
176 |
# Concatenate all content into a single string for NER
|
177 |
df_string_representation = st.session_state['json_dataframe'].to_string(index=False, header=False)
|
178 |
# Simple regex to remove non-alphanumeric characters but keep spaces and periods
|
179 |
text_content = re.sub(r'[^\w\s.]', '', df_string_representation)
|
180 |
# Remove the specific string "Empty DataFrame Columns" if it appears due to conversion
|
181 |
text_content = text_content.replace("Empty DataFrame Columns", "").strip()
|
182 |
+
current_run_text = text_content # Set text for current run
|
183 |
+
if not current_run_text.strip(): # Check if text is effectively empty
|
|
|
184 |
st.warning("No meaningful text could be extracted from the JSON DataFrame for analysis.")
|
185 |
+
current_run_text = None # Reset to None if empty
|
|
|
186 |
except ValueError:
|
187 |
# If direct conversion to DataFrame fails, try to extract strings directly from JSON structure
|
188 |
st.info("JSON data could not be directly converted to a simple DataFrame for display. Attempting to extract text directly.")
|
|
|
209 |
for sub_val in value:
|
210 |
if isinstance(sub_val, str):
|
211 |
extracted_texts_list.append(sub_val)
|
|
|
212 |
if extracted_texts_list:
|
213 |
current_run_text = " ".join(extracted_texts_list).strip()
|
214 |
else:
|
|
|
220 |
encrypted_text_bytes = encrypt_text(current_run_text)
|
221 |
st.session_state['encrypted_extracted_text'] = encrypted_text_bytes
|
222 |
# Optionally clear the unencrypted version from session state if you only want the encrypted one
|
223 |
+
# st.session_state['extracted_text_for_ner'] = None
|
|
|
224 |
st.success("JSON file uploaded successfully. File content encrypted and secured. Due to security protocols, the file content is hidden.")
|
225 |
st.divider()
|
226 |
else:
|
227 |
st.session_state['encrypted_extracted_text'] = None
|
228 |
# st.session_state['extracted_text_for_ner'] = None
|
229 |
st.error("Could not extract meaningful text from the uploaded JSON file.")
|
|
|
230 |
except json.JSONDecodeError as e:
|
231 |
st.error(f"JSON Decode Error: {e}")
|
232 |
st.error("Please ensure the uploaded file contains valid JSON data.")
|
|
|
237 |
st.session_state['encrypted_extracted_text'] = None
|
238 |
st.session_state['json_dataframe'] = None
|
239 |
|
|
|
240 |
# --- Results Button and Processing Logic ---
|
241 |
if st.button("Results"):
|
242 |
+
start_time_overall = time.time() # Start time for overall processing
|
243 |
if not comet_initialized:
|
244 |
st.warning("Comet ML not initialized. Check environment variables if you wish to log data.")
|
245 |
|
|
|
251 |
text_for_ner = None
|
252 |
if st.session_state['encrypted_extracted_text'] is not None:
|
253 |
text_for_ner = decrypt_text(st.session_state['encrypted_extracted_text'])
|
254 |
+
|
255 |
if text_for_ner is None or not text_for_ner.strip():
|
256 |
st.warning("No extractable text content available for analysis. Please upload a valid JSON file.")
|
257 |
st.stop()
|
|
|
260 |
|
261 |
with st.spinner("Analyzing text...", show_time=True):
|
262 |
model = load_ner_model()
|
263 |
+
|
264 |
+
# Measure NER model processing time
|
265 |
+
start_time_ner = time.time()
|
266 |
+
text_entities = model(text_for_ner) # Use the decrypted text
|
267 |
+
end_time_ner = time.time()
|
268 |
+
ner_processing_time = end_time_ner - start_time_ner
|
269 |
+
|
270 |
df = pd.DataFrame(text_entities)
|
271 |
|
272 |
if 'word' in df.columns:
|
273 |
# Ensure 'word' column is string type before applying regex
|
274 |
+
if df['word'].dtype == 'object':
|
275 |
+
pattern = r'[^\w\s]' # Regex to remove non-alphanumeric characters but keep spaces and periods
|
276 |
df['word'] = df['word'].astype(str).replace(pattern, '', regex=True)
|
277 |
else:
|
278 |
st.warning("The 'word' column is not of string type; skipping character cleaning.")
|
279 |
else:
|
280 |
st.error("The 'word' column does not exist in the DataFrame. Cannot perform cleaning.")
|
281 |
+
st.stop() # Stop execution if the column is missing
|
282 |
|
283 |
# Replace empty strings with 'Unknown' and drop rows with NaN after cleaning
|
284 |
df = df.replace('', 'Unknown').dropna()
|
|
|
287 |
st.warning("No entities were extracted from the uploaded text.")
|
288 |
st.stop()
|
289 |
|
290 |
+
# --- Add 'category' column to the DataFrame based on the grouped labels ---
|
291 |
+
df['category'] = df['entity_group'].map(LABEL_TO_CATEGORY_MAP)
|
292 |
+
# Handle cases where an entity_group might not have a category
|
293 |
+
df['category'] = df['category'].fillna('Uncategorized')
|
294 |
+
|
295 |
if comet_initialized:
|
296 |
experiment = Experiment(
|
297 |
api_key=COMET_API_KEY,
|
|
|
300 |
)
|
301 |
experiment.log_parameter("input_text_length", len(text_for_ner))
|
302 |
experiment.log_table("predicted_entities", df)
|
303 |
+
experiment.log_metric("ner_processing_time_seconds", ner_processing_time)
|
304 |
+
|
305 |
|
306 |
# --- Display Results ---
|
307 |
+
st.subheader("Extracted Entities", divider="rainbow")
|
308 |
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
|
309 |
df_styled = df.style.set_properties(**properties)
|
310 |
st.dataframe(df_styled, use_container_width=True)
|
|
|
321 |
'**start**': ['index of the start of the corresponding entity']
|
322 |
|
323 |
'**end**': ['index of the end of the corresponding entity']
|
324 |
+
|
325 |
+
'**category**': ['the broader category the entity belongs to']
|
326 |
''')
|
327 |
|
328 |
+
st.subheader("Grouped entities", divider="orange")
|
329 |
+
|
330 |
+
# Get unique categories and sort them for consistent tab order
|
331 |
+
unique_categories = sorted(df['category'].unique())
|
332 |
+
tabs_per_row = 4 # Adjust as needed for better layout
|
333 |
+
|
334 |
+
# Loop through categories in chunks to create rows of tabs
|
335 |
+
for i in range(0, len(unique_categories), tabs_per_row):
|
336 |
+
current_row_categories = unique_categories[i : i + tabs_per_row]
|
337 |
+
tabs = st.tabs(current_row_categories)
|
338 |
+
|
339 |
+
for j, category in enumerate(current_row_categories):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
with tabs[j]:
|
341 |
+
df_filtered = df[df["category"] == category]
|
342 |
+
if not df_filtered.empty:
|
343 |
st.dataframe(df_filtered, use_container_width=True)
|
344 |
else:
|
345 |
+
st.info(f"No '{category}' entities found in the text.")
|
346 |
# Display an empty DataFrame for consistency if no entities are found
|
347 |
st.dataframe(pd.DataFrame({
|
348 |
+
'entity_group': [np.nan],
|
349 |
'score': [np.nan],
|
350 |
'word': [np.nan],
|
351 |
'start': [np.nan],
|
352 |
+
'end': [np.nan],
|
353 |
+
'category': [category]
|
354 |
}), hide_index=True)
|
|
|
355 |
st.divider()
|
356 |
|
357 |
# --- Visualizations ---
|
358 |
st.subheader("Tree map", divider="orange")
|
359 |
+
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'entity_group', 'word'],
|
360 |
+
values='score', color='category',
|
361 |
+
color_discrete_map={
|
362 |
+
'Persons': 'blue',
|
363 |
+
'Locations': 'green',
|
364 |
+
'Organizations': 'red',
|
365 |
+
'Miscellaneous': 'purple',
|
366 |
+
'Uncategorized': 'gray'
|
367 |
+
})
|
368 |
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
369 |
st.plotly_chart(fig_treemap)
|
370 |
if comet_initialized:
|
371 |
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
|
372 |
|
373 |
+
# Group by category and entity_group to get counts for pie and bar charts
|
374 |
+
grouped_counts = df.groupby('category').size().reset_index(name='count')
|
375 |
|
376 |
col1, col2 = st.columns(2)
|
377 |
with col1:
|
378 |
st.subheader("Pie Chart", divider="orange")
|
379 |
+
fig_pie = px.pie(grouped_counts, values='count', names='category',
|
380 |
+
hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
|
381 |
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
382 |
st.plotly_chart(fig_pie)
|
383 |
if comet_initialized:
|
384 |
+
experiment.log_figure(figure=fig_pie, figure_name="category_pie_chart")
|
385 |
|
386 |
with col2:
|
387 |
st.subheader("Bar Chart", divider="orange")
|
388 |
+
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True,
|
389 |
+
title='Occurrences of predicted categories')
|
390 |
st.plotly_chart(fig_bar)
|
391 |
if comet_initialized:
|
392 |
+
experiment.log_figure(figure=fig_bar, figure_name="category_bar_chart")
|
393 |
|
394 |
# --- Downloadable Content ---
|
395 |
dfa = pd.DataFrame(
|
396 |
data={
|
397 |
+
'Column Name': ['word', 'entity_group', 'score', 'start', 'end', 'category'],
|
398 |
'Description': [
|
399 |
'entity extracted from your text data',
|
400 |
'label (tag) assigned to a given extracted entity',
|
401 |
'accuracy score; how accurately a tag has been assigned to a given entity',
|
402 |
'index of the start of the corresponding entity',
|
403 |
'index of the end of the corresponding entity',
|
404 |
+
'the broader category the entity belongs to',
|
405 |
]
|
406 |
}
|
407 |
)
|
|
|
408 |
buf = io.BytesIO()
|
409 |
with zipfile.ZipFile(buf, "w") as myzip:
|
410 |
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
|
|
426 |
st.divider()
|
427 |
if comet_initialized:
|
428 |
experiment.end()
|
429 |
+
|
430 |
+
end_time_overall = time.time()
|
431 |
+
elapsed_time_overall = end_time_overall - start_time_overall
|
432 |
+
st.info(f"Results processed in **{elapsed_time_overall:.2f} seconds**.")
|
433 |
+
|
434 |
st.write(f"Number of times you requested results: **{st.session_state['file_upload_attempts']}/{max_attempts}**")
|
435 |
+
|