Maria Tsilimos
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -12,30 +12,91 @@ import re
|
|
12 |
import numpy as np
|
13 |
import json
|
14 |
from cryptography.fernet import Fernet
|
15 |
-
|
16 |
-
st.set_page_config(layout="wide",
|
17 |
-
|
|
|
18 |
# --- Configuration ---
|
19 |
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
20 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
21 |
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
22 |
-
|
23 |
comet_initialized = False
|
24 |
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
|
25 |
comet_initialized = True
|
26 |
-
|
27 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
if 'file_upload_attempts' not in st.session_state:
|
29 |
-
st.session_state['file_upload_attempts'] =
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
if 'encrypted_extracted_text' not in st.session_state:
|
32 |
-
|
33 |
-
|
34 |
if 'json_dataframe' not in st.session_state:
|
35 |
st.session_state['json_dataframe'] = None
|
36 |
-
|
37 |
-
max_attempts = 10
|
38 |
-
|
39 |
# Define the categories and their associated entity labels
|
40 |
ENTITY_LABELS_CATEGORIZED = {
|
41 |
"Persons": ["PER"],
|
@@ -43,13 +104,12 @@ ENTITY_LABELS_CATEGORIZED = {
|
|
43 |
"Organizations": ["ORG"],
|
44 |
"Miscellaneous": ["MISC"],
|
45 |
}
|
46 |
-
|
47 |
# Create a mapping from each specific entity label to its category
|
48 |
LABEL_TO_CATEGORY_MAP = {
|
49 |
label: category for category, labels in ENTITY_LABELS_CATEGORIZED.items() for label in labels
|
50 |
}
|
51 |
-
|
52 |
-
|
53 |
@st.cache_resource
|
54 |
def load_ner_model():
|
55 |
"""
|
@@ -67,8 +127,7 @@ def load_ner_model():
|
|
67 |
except Exception as e:
|
68 |
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
69 |
st.stop()
|
70 |
-
|
71 |
-
|
72 |
@st.cache_resource
|
73 |
def load_encryption_key():
|
74 |
"""
|
@@ -81,7 +140,7 @@ def load_encryption_key():
|
|
81 |
key_str = os.environ.get("FERNET_KEY")
|
82 |
if not key_str:
|
83 |
raise ValueError("FERNET_KEY environment variable not set. Cannot perform encryption/decryption.")
|
84 |
-
|
85 |
# Fernet key must be bytes, so encode the string
|
86 |
key_bytes = key_str.encode('utf-8')
|
87 |
return Fernet(key_bytes)
|
@@ -95,19 +154,17 @@ def load_encryption_key():
|
|
95 |
except Exception as e:
|
96 |
st.error(f"An unexpected error occurred while loading encryption key: {e}. Please check your key format and environment settings.")
|
97 |
st.stop()
|
98 |
-
|
99 |
# Initialize the Fernet cipher instance globally (cached)
|
100 |
fernet = load_encryption_key()
|
101 |
-
|
102 |
-
|
103 |
def encrypt_text(text_content: str) -> bytes:
|
104 |
"""
|
105 |
Encrypts a string using the loaded Fernet cipher.
|
106 |
The input string is first encoded to UTF-8 bytes.
|
107 |
"""
|
108 |
return fernet.encrypt(text_content.encode('utf-8'))
|
109 |
-
|
110 |
-
|
111 |
def decrypt_text(encrypted_bytes: bytes) -> str | None:
|
112 |
"""
|
113 |
Decrypts bytes using the loaded Fernet cipher.
|
@@ -118,11 +175,11 @@ def decrypt_text(encrypted_bytes: bytes) -> str | None:
|
|
118 |
except Exception as e:
|
119 |
st.error(f"Decryption failed. This might indicate data tampering or an incorrect encryption key. Error: {e}")
|
120 |
return None
|
121 |
-
|
122 |
# --- UI Elements ---
|
123 |
st.subheader("Scandinavian JSON Entity Finder", divider="orange")
|
124 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
125 |
-
|
126 |
expander = st.expander("**Important notes on the Scandinavian JSON Entity Finder**")
|
127 |
expander.write('''
|
128 |
**Named Entities:** This Scandinavian JSON Entity Finder predicts four
|
@@ -130,55 +187,66 @@ expander.write('''
|
|
130 |
miscellaneous”). Results are presented in an easy-to-read table, visualized in
|
131 |
an interactive tree map, pie chart, and bar chart, and are available for
|
132 |
download along with a Glossary of tags.
|
133 |
-
|
134 |
**How to Use:** Upload your JSON file. Then, click the 'Results' button
|
135 |
to extract and tag entities in your text data.
|
136 |
-
|
137 |
**Usage Limits:** You can request results up to 10 times.
|
138 |
-
|
139 |
**Language settings:** Please check and adjust the language settings in
|
140 |
your computer, so the Danish, Swedish, Norwegian, Icelandic and Faroese
|
141 |
characters are handled properly in your downloaded file.
|
142 |
-
|
143 |
**Customization:** To change the app's background color to white or
|
144 |
black, click the three-dot menu on the right-hand side of your app, go to
|
145 |
Settings and then Choose app theme, colors and fonts.
|
146 |
-
|
147 |
**Technical issues:** If your connection times out, please refresh the
|
148 |
page or reopen the app's URL.
|
149 |
-
|
150 |
For any errors or inquiries, please contact us at [email protected]
|
151 |
''')
|
152 |
-
|
153 |
with st.sidebar:
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
st.
|
159 |
-
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
type="primary")
|
162 |
-
|
163 |
uploaded_file = st.file_uploader("Choose a JSON file", type=["json"])
|
164 |
-
|
165 |
# Initialize text for the current run outside the if uploaded_file block
|
166 |
# This will be populated if a file is uploaded, otherwise it remains None
|
167 |
current_run_text = None
|
168 |
-
|
169 |
if uploaded_file is not None:
|
170 |
try:
|
171 |
# Read the content as bytes first, then decode for JSON parsing
|
172 |
file_contents_bytes = uploaded_file.read()
|
173 |
-
|
174 |
# Reset the file pointer after reading, so json.load can read from the beginning
|
175 |
uploaded_file.seek(0)
|
176 |
dados = json.load(uploaded_file)
|
177 |
-
|
178 |
# Attempt to convert JSON to DataFrame and extract text
|
179 |
try:
|
180 |
st.session_state['json_dataframe'] = pd.DataFrame(dados)
|
181 |
-
|
182 |
# Concatenate all content into a single string for NER
|
183 |
df_string_representation = st.session_state['json_dataframe'].to_string(index=False, header=False)
|
184 |
# Simple regex to remove non-alphanumeric characters but keep spaces and periods
|
@@ -196,32 +264,42 @@ if uploaded_file is not None:
|
|
196 |
if isinstance(dados, list):
|
197 |
for item in dados:
|
198 |
if isinstance(item, str):
|
199 |
-
|
200 |
elif isinstance(item, dict):
|
201 |
# Recursively get string values from dicts in a list
|
202 |
for val in item.values():
|
203 |
if isinstance(val, str):
|
204 |
-
|
205 |
elif isinstance(val, list):
|
206 |
for sub_val in val:
|
207 |
if isinstance(sub_val, str):
|
208 |
-
|
209 |
elif isinstance(dados, dict):
|
210 |
# Get string values from a dictionary
|
211 |
for value in dados.values():
|
212 |
if isinstance(value, str):
|
213 |
-
|
214 |
elif isinstance(value, list):
|
215 |
for sub_val in value:
|
216 |
if isinstance(sub_val, str):
|
217 |
-
|
218 |
if extracted_texts_list:
|
219 |
current_run_text = " ".join(extracted_texts_list).strip()
|
220 |
else:
|
221 |
st.warning("No string text could be extracted from the JSON for analysis.")
|
222 |
current_run_text = None
|
223 |
-
|
224 |
if current_run_text:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
# --- ENCRYPT THE EXTRACTED TEXT BEFORE STORING IN SESSION STATE ---
|
226 |
encrypted_text_bytes = encrypt_text(current_run_text)
|
227 |
st.session_state['encrypted_extracted_text'] = encrypted_text_bytes
|
@@ -242,39 +320,42 @@ if uploaded_file is not None:
|
|
242 |
st.error(f"An unexpected error occurred during file processing: {e}")
|
243 |
st.session_state['encrypted_extracted_text'] = None
|
244 |
st.session_state['json_dataframe'] = None
|
245 |
-
|
246 |
# --- Results Button and Processing Logic ---
|
247 |
if st.button("Results"):
|
248 |
start_time_overall = time.time() # Start time for overall processing
|
249 |
if not comet_initialized:
|
250 |
st.warning("Comet ML not initialized. Check environment variables if you wish to log data.")
|
251 |
-
|
|
|
252 |
if st.session_state['file_upload_attempts'] >= max_attempts:
|
253 |
st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
|
254 |
st.stop()
|
255 |
-
|
256 |
# --- DECRYPT THE TEXT BEFORE PASSING TO NER MODEL ---
|
257 |
text_for_ner = None
|
258 |
if st.session_state['encrypted_extracted_text'] is not None:
|
259 |
text_for_ner = decrypt_text(st.session_state['encrypted_extracted_text'])
|
260 |
-
|
261 |
if text_for_ner is None or not text_for_ner.strip():
|
262 |
st.warning("No extractable text content available for analysis. Please upload a valid JSON file.")
|
263 |
st.stop()
|
264 |
-
|
|
|
265 |
st.session_state['file_upload_attempts'] += 1
|
266 |
-
|
|
|
267 |
with st.spinner("Analyzing text...", show_time=True):
|
268 |
model = load_ner_model()
|
269 |
-
|
270 |
# Measure NER model processing time
|
271 |
start_time_ner = time.time()
|
272 |
text_entities = model(text_for_ner) # Use the decrypted text
|
273 |
end_time_ner = time.time()
|
274 |
ner_processing_time = end_time_ner - start_time_ner
|
275 |
-
|
276 |
df = pd.DataFrame(text_entities)
|
277 |
-
|
278 |
if 'word' in df.columns:
|
279 |
# Ensure 'word' column is string type before applying regex
|
280 |
if df['word'].dtype == 'object':
|
@@ -285,19 +366,19 @@ if st.button("Results"):
|
|
285 |
else:
|
286 |
st.error("The 'word' column does not exist in the DataFrame. Cannot perform cleaning.")
|
287 |
st.stop() # Stop execution if the column is missing
|
288 |
-
|
289 |
# Replace empty strings with 'Unknown' and drop rows with NaN after cleaning
|
290 |
df = df.replace('', 'Unknown').dropna()
|
291 |
-
|
292 |
if df.empty:
|
293 |
st.warning("No entities were extracted from the uploaded text.")
|
294 |
st.stop()
|
295 |
-
|
296 |
# --- Add 'category' column to the DataFrame based on the grouped labels ---
|
297 |
df['category'] = df['entity_group'].map(LABEL_TO_CATEGORY_MAP)
|
298 |
# Handle cases where an entity_group might not have a category
|
299 |
df['category'] = df['category'].fillna('Uncategorized')
|
300 |
-
|
301 |
if comet_initialized:
|
302 |
experiment = Experiment(
|
303 |
api_key=COMET_API_KEY,
|
@@ -307,41 +388,41 @@ if st.button("Results"):
|
|
307 |
experiment.log_parameter("input_text_length", len(text_for_ner))
|
308 |
experiment.log_table("predicted_entities", df)
|
309 |
experiment.log_metric("ner_processing_time_seconds", ner_processing_time)
|
310 |
-
|
311 |
-
|
312 |
# --- Display Results ---
|
313 |
st.subheader("Extracted Entities", divider="rainbow")
|
314 |
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
|
315 |
df_styled = df.style.set_properties(**properties)
|
316 |
st.dataframe(df_styled, use_container_width=True)
|
317 |
-
|
318 |
with st.expander("See Glossary of tags"):
|
319 |
st.write('''
|
320 |
'**word**': ['entity extracted from your text data']
|
321 |
-
|
322 |
'**score**': ['accuracy score; how accurately a tag has been assigned to
|
323 |
a given entity']
|
324 |
-
|
325 |
'**entity_group**': ['label (tag) assigned to a given extracted entity']
|
326 |
-
|
327 |
'**start**': ['index of the start of the corresponding entity']
|
328 |
-
|
329 |
'**end**': ['index of the end of the corresponding entity']
|
330 |
-
|
331 |
'**category**': ['the broader category the entity belongs to']
|
332 |
''')
|
333 |
-
|
334 |
st.subheader("Grouped entities", divider="orange")
|
335 |
-
|
336 |
# Get unique categories and sort them for consistent tab order
|
337 |
unique_categories = sorted(df['category'].unique())
|
338 |
tabs_per_row = 4 # Adjust as needed for better layout
|
339 |
-
|
340 |
# Loop through categories in chunks to create rows of tabs
|
341 |
for i in range(0, len(unique_categories), tabs_per_row):
|
342 |
current_row_categories = unique_categories[i : i + tabs_per_row]
|
343 |
tabs = st.tabs(current_row_categories)
|
344 |
-
|
345 |
for j, category in enumerate(current_row_categories):
|
346 |
with tabs[j]:
|
347 |
df_filtered = df[df["category"] == category]
|
@@ -359,26 +440,27 @@ if st.button("Results"):
|
|
359 |
'category': [category]
|
360 |
}), hide_index=True)
|
361 |
st.divider()
|
362 |
-
|
363 |
# --- Visualizations ---
|
364 |
st.subheader("Tree map", divider="orange")
|
365 |
-
fig_treemap = px.treemap(df,
|
|
|
366 |
values='score', color='category',
|
367 |
color_discrete_map={
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
})
|
374 |
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
375 |
st.plotly_chart(fig_treemap)
|
376 |
if comet_initialized:
|
377 |
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
|
378 |
-
|
379 |
# Group by category and entity_group to get counts for pie and bar charts
|
380 |
grouped_counts = df.groupby('category').size().reset_index(name='count')
|
381 |
-
|
382 |
col1, col2 = st.columns(2)
|
383 |
with col1:
|
384 |
st.subheader("Pie Chart", divider="orange")
|
@@ -388,7 +470,7 @@ if st.button("Results"):
|
|
388 |
st.plotly_chart(fig_pie)
|
389 |
if comet_initialized:
|
390 |
experiment.log_figure(figure=fig_pie, figure_name="category_pie_chart")
|
391 |
-
|
392 |
with col2:
|
393 |
st.subheader("Bar Chart", divider="orange")
|
394 |
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True,
|
@@ -396,7 +478,7 @@ if st.button("Results"):
|
|
396 |
st.plotly_chart(fig_bar)
|
397 |
if comet_initialized:
|
398 |
experiment.log_figure(figure=fig_bar, figure_name="category_bar_chart")
|
399 |
-
|
400 |
# --- Downloadable Content ---
|
401 |
dfa = pd.DataFrame(
|
402 |
data={
|
@@ -415,7 +497,7 @@ if st.button("Results"):
|
|
415 |
with zipfile.ZipFile(buf, "w") as myzip:
|
416 |
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
417 |
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
418 |
-
|
419 |
with stylable_container(
|
420 |
key="download_button",
|
421 |
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
|
@@ -428,13 +510,13 @@ if st.button("Results"):
|
|
428 |
)
|
429 |
if comet_initialized:
|
430 |
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
|
431 |
-
|
432 |
st.divider()
|
433 |
if comet_initialized:
|
434 |
experiment.end()
|
435 |
-
|
436 |
end_time_overall = time.time()
|
437 |
elapsed_time_overall = end_time_overall - start_time_overall
|
438 |
st.info(f"Results processed in **{elapsed_time_overall:.2f} seconds**.")
|
439 |
-
|
440 |
st.write(f"Number of times you requested results: **{st.session_state['file_upload_attempts']}/{max_attempts}**")
|
|
|
12 |
import numpy as np
|
13 |
import json
|
14 |
from cryptography.fernet import Fernet
|
15 |
+
|
16 |
+
st.set_page_config(layout="wide",
|
17 |
+
page_title="Named Entity Recognition App")
|
18 |
+
|
19 |
# --- Configuration ---
|
20 |
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
21 |
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
22 |
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
23 |
+
|
24 |
comet_initialized = False
|
25 |
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
|
26 |
comet_initialized = True
|
27 |
+
|
28 |
+
# --- Persistent Counter and History Configuration ---
|
29 |
+
COUNTER_FILE = "counter_json_finder.json"
|
30 |
+
HISTORY_FILE = "file_history_json_finder.json"
|
31 |
+
max_attempts = 10
|
32 |
+
|
33 |
+
# --- Functions to manage persistent data ---
|
34 |
+
def load_attempts():
|
35 |
+
"""
|
36 |
+
Loads the attempts count from a persistent JSON file.
|
37 |
+
Returns 0 if the file doesn't exist or is invalid.
|
38 |
+
"""
|
39 |
+
if os.path.exists(COUNTER_FILE):
|
40 |
+
try:
|
41 |
+
with open(COUNTER_FILE, "r") as f:
|
42 |
+
data = json.load(f)
|
43 |
+
return data.get('file_upload_attempts', 0)
|
44 |
+
except (json.JSONDecodeError, KeyError):
|
45 |
+
return 0
|
46 |
+
return 0
|
47 |
+
|
48 |
+
def save_attempts(attempts):
|
49 |
+
"""
|
50 |
+
Saves the current attempts count to the persistent JSON file.
|
51 |
+
"""
|
52 |
+
with open(COUNTER_FILE, "w") as f:
|
53 |
+
json.dump({'file_upload_attempts': attempts}, f)
|
54 |
+
|
55 |
+
def load_history():
|
56 |
+
"""
|
57 |
+
Loads the file upload history from a persistent JSON file.
|
58 |
+
Returns an empty list if the file doesn't exist or is invalid.
|
59 |
+
"""
|
60 |
+
if os.path.exists(HISTORY_FILE):
|
61 |
+
try:
|
62 |
+
with open(HISTORY_FILE, "r") as f:
|
63 |
+
data = json.load(f)
|
64 |
+
return data.get('uploaded_files', [])
|
65 |
+
except (json.JSONDecodeError, KeyError):
|
66 |
+
return []
|
67 |
+
return []
|
68 |
+
|
69 |
+
def save_history(history):
|
70 |
+
"""
|
71 |
+
Saves the current file upload history to the persistent JSON file.
|
72 |
+
"""
|
73 |
+
with open(HISTORY_FILE, "w") as f:
|
74 |
+
json.dump({'uploaded_files': history}, f)
|
75 |
+
|
76 |
+
def clear_history_data():
|
77 |
+
"""Clears the file history from session state and deletes the persistent file."""
|
78 |
+
if os.path.exists(HISTORY_FILE):
|
79 |
+
os.remove(HISTORY_FILE)
|
80 |
+
st.session_state['uploaded_files_history'] = []
|
81 |
+
st.rerun()
|
82 |
+
|
83 |
+
# --- Initialize session state with persistent data ---
|
84 |
if 'file_upload_attempts' not in st.session_state:
|
85 |
+
st.session_state['file_upload_attempts'] = load_attempts()
|
86 |
+
# Save to ensure the file exists on first run
|
87 |
+
save_attempts(st.session_state['file_upload_attempts'])
|
88 |
+
|
89 |
+
if 'uploaded_files_history' not in st.session_state:
|
90 |
+
st.session_state['uploaded_files_history'] = load_history()
|
91 |
+
# Save to ensure the file exists on first run
|
92 |
+
save_history(st.session_state['uploaded_files_history'])
|
93 |
+
|
94 |
if 'encrypted_extracted_text' not in st.session_state:
|
95 |
+
st.session_state['encrypted_extracted_text'] = None
|
96 |
+
|
97 |
if 'json_dataframe' not in st.session_state:
|
98 |
st.session_state['json_dataframe'] = None
|
99 |
+
|
|
|
|
|
100 |
# Define the categories and their associated entity labels
|
101 |
ENTITY_LABELS_CATEGORIZED = {
|
102 |
"Persons": ["PER"],
|
|
|
104 |
"Organizations": ["ORG"],
|
105 |
"Miscellaneous": ["MISC"],
|
106 |
}
|
107 |
+
|
108 |
# Create a mapping from each specific entity label to its category
|
109 |
LABEL_TO_CATEGORY_MAP = {
|
110 |
label: category for category, labels in ENTITY_LABELS_CATEGORIZED.items() for label in labels
|
111 |
}
|
112 |
+
|
|
|
113 |
@st.cache_resource
|
114 |
def load_ner_model():
|
115 |
"""
|
|
|
127 |
except Exception as e:
|
128 |
st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
|
129 |
st.stop()
|
130 |
+
|
|
|
131 |
@st.cache_resource
|
132 |
def load_encryption_key():
|
133 |
"""
|
|
|
140 |
key_str = os.environ.get("FERNET_KEY")
|
141 |
if not key_str:
|
142 |
raise ValueError("FERNET_KEY environment variable not set. Cannot perform encryption/decryption.")
|
143 |
+
|
144 |
# Fernet key must be bytes, so encode the string
|
145 |
key_bytes = key_str.encode('utf-8')
|
146 |
return Fernet(key_bytes)
|
|
|
154 |
except Exception as e:
|
155 |
st.error(f"An unexpected error occurred while loading encryption key: {e}. Please check your key format and environment settings.")
|
156 |
st.stop()
|
157 |
+
|
158 |
# Initialize the Fernet cipher instance globally (cached)
|
159 |
fernet = load_encryption_key()
|
160 |
+
|
|
|
161 |
def encrypt_text(text_content: str) -> bytes:
|
162 |
"""
|
163 |
Encrypts a string using the loaded Fernet cipher.
|
164 |
The input string is first encoded to UTF-8 bytes.
|
165 |
"""
|
166 |
return fernet.encrypt(text_content.encode('utf-8'))
|
167 |
+
|
|
|
168 |
def decrypt_text(encrypted_bytes: bytes) -> str | None:
|
169 |
"""
|
170 |
Decrypts bytes using the loaded Fernet cipher.
|
|
|
175 |
except Exception as e:
|
176 |
st.error(f"Decryption failed. This might indicate data tampering or an incorrect encryption key. Error: {e}")
|
177 |
return None
|
178 |
+
|
179 |
# --- UI Elements ---
|
180 |
st.subheader("Scandinavian JSON Entity Finder", divider="orange")
|
181 |
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
182 |
+
|
183 |
expander = st.expander("**Important notes on the Scandinavian JSON Entity Finder**")
|
184 |
expander.write('''
|
185 |
**Named Entities:** This Scandinavian JSON Entity Finder predicts four
|
|
|
187 |
miscellaneous”). Results are presented in an easy-to-read table, visualized in
|
188 |
an interactive tree map, pie chart, and bar chart, and are available for
|
189 |
download along with a Glossary of tags.
|
190 |
+
|
191 |
**How to Use:** Upload your JSON file. Then, click the 'Results' button
|
192 |
to extract and tag entities in your text data.
|
193 |
+
|
194 |
**Usage Limits:** You can request results up to 10 times.
|
195 |
+
|
196 |
**Language settings:** Please check and adjust the language settings in
|
197 |
your computer, so the Danish, Swedish, Norwegian, Icelandic and Faroese
|
198 |
characters are handled properly in your downloaded file.
|
199 |
+
|
200 |
**Customization:** To change the app's background color to white or
|
201 |
black, click the three-dot menu on the right-hand side of your app, go to
|
202 |
Settings and then Choose app theme, colors and fonts.
|
203 |
+
|
204 |
**Technical issues:** If your connection times out, please refresh the
|
205 |
page or reopen the app's URL.
|
206 |
+
|
207 |
For any errors or inquiries, please contact us at [email protected]
|
208 |
''')
|
209 |
+
|
210 |
with st.sidebar:
|
211 |
+
|
212 |
+
|
213 |
+
# --- Added Persistent History Display ---
|
214 |
+
st.subheader("Your File Upload History", divider="orange")
|
215 |
+
if st.session_state['uploaded_files_history']:
|
216 |
+
history_to_display = st.session_state['uploaded_files_history']
|
217 |
+
history_df = pd.DataFrame(history_to_display)
|
218 |
+
st.dataframe(history_df, use_container_width=True, hide_index=True)
|
219 |
+
# Add a clear history button
|
220 |
+
if st.button("Clear File History", help="This will permanently delete the file history from the application."):
|
221 |
+
clear_history_data()
|
222 |
+
else:
|
223 |
+
st.info("You have not uploaded any files yet.")
|
224 |
+
|
225 |
+
|
226 |
+
st.subheader("Build your own NER Web App in a minute without writing a single line of code.", divider="orange")
|
227 |
+
st.link_button("NER File Builder",
|
228 |
+
"https://nlpblogs.com/shop/named-entity-recognition-ner/ner-file-builder/",
|
229 |
type="primary")
|
230 |
+
|
231 |
uploaded_file = st.file_uploader("Choose a JSON file", type=["json"])
|
232 |
+
|
233 |
# Initialize text for the current run outside the if uploaded_file block
|
234 |
# This will be populated if a file is uploaded, otherwise it remains None
|
235 |
current_run_text = None
|
236 |
+
|
237 |
if uploaded_file is not None:
|
238 |
try:
|
239 |
# Read the content as bytes first, then decode for JSON parsing
|
240 |
file_contents_bytes = uploaded_file.read()
|
241 |
+
|
242 |
# Reset the file pointer after reading, so json.load can read from the beginning
|
243 |
uploaded_file.seek(0)
|
244 |
dados = json.load(uploaded_file)
|
245 |
+
|
246 |
# Attempt to convert JSON to DataFrame and extract text
|
247 |
try:
|
248 |
st.session_state['json_dataframe'] = pd.DataFrame(dados)
|
249 |
+
|
250 |
# Concatenate all content into a single string for NER
|
251 |
df_string_representation = st.session_state['json_dataframe'].to_string(index=False, header=False)
|
252 |
# Simple regex to remove non-alphanumeric characters but keep spaces and periods
|
|
|
264 |
if isinstance(dados, list):
|
265 |
for item in dados:
|
266 |
if isinstance(item, str):
|
267 |
+
extracted_texts_list.append(item)
|
268 |
elif isinstance(item, dict):
|
269 |
# Recursively get string values from dicts in a list
|
270 |
for val in item.values():
|
271 |
if isinstance(val, str):
|
272 |
+
extracted_texts_list.append(val)
|
273 |
elif isinstance(val, list):
|
274 |
for sub_val in val:
|
275 |
if isinstance(sub_val, str):
|
276 |
+
extracted_texts_list.append(sub_val)
|
277 |
elif isinstance(dados, dict):
|
278 |
# Get string values from a dictionary
|
279 |
for value in dados.values():
|
280 |
if isinstance(value, str):
|
281 |
+
extracted_texts_list.append(value)
|
282 |
elif isinstance(value, list):
|
283 |
for sub_val in value:
|
284 |
if isinstance(sub_val, str):
|
285 |
+
extracted_texts_list.append(sub_val)
|
286 |
if extracted_texts_list:
|
287 |
current_run_text = " ".join(extracted_texts_list).strip()
|
288 |
else:
|
289 |
st.warning("No string text could be extracted from the JSON for analysis.")
|
290 |
current_run_text = None
|
291 |
+
|
292 |
if current_run_text:
|
293 |
+
# --- ADDING TO UPLOAD HISTORY ---
|
294 |
+
new_upload_entry = {
|
295 |
+
"filename": uploaded_file.name,
|
296 |
+
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S")
|
297 |
+
}
|
298 |
+
# Append the new file to the session state history
|
299 |
+
st.session_state['uploaded_files_history'].append(new_upload_entry)
|
300 |
+
# Save the updated history to the persistent file
|
301 |
+
save_history(st.session_state['uploaded_files_history'])
|
302 |
+
# --- END OF HISTORY ADDITION ---
|
303 |
# --- ENCRYPT THE EXTRACTED TEXT BEFORE STORING IN SESSION STATE ---
|
304 |
encrypted_text_bytes = encrypt_text(current_run_text)
|
305 |
st.session_state['encrypted_extracted_text'] = encrypted_text_bytes
|
|
|
320 |
st.error(f"An unexpected error occurred during file processing: {e}")
|
321 |
st.session_state['encrypted_extracted_text'] = None
|
322 |
st.session_state['json_dataframe'] = None
|
323 |
+
|
324 |
# --- Results Button and Processing Logic ---
|
325 |
if st.button("Results"):
|
326 |
start_time_overall = time.time() # Start time for overall processing
|
327 |
if not comet_initialized:
|
328 |
st.warning("Comet ML not initialized. Check environment variables if you wish to log data.")
|
329 |
+
|
330 |
+
# Check attempts limit BEFORE running the model
|
331 |
if st.session_state['file_upload_attempts'] >= max_attempts:
|
332 |
st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
|
333 |
st.stop()
|
334 |
+
|
335 |
# --- DECRYPT THE TEXT BEFORE PASSING TO NER MODEL ---
|
336 |
text_for_ner = None
|
337 |
if st.session_state['encrypted_extracted_text'] is not None:
|
338 |
text_for_ner = decrypt_text(st.session_state['encrypted_extracted_text'])
|
339 |
+
|
340 |
if text_for_ner is None or not text_for_ner.strip():
|
341 |
st.warning("No extractable text content available for analysis. Please upload a valid JSON file.")
|
342 |
st.stop()
|
343 |
+
|
344 |
+
# Increment the attempts counter and save it to the persistent file
|
345 |
st.session_state['file_upload_attempts'] += 1
|
346 |
+
save_attempts(st.session_state['file_upload_attempts'])
|
347 |
+
|
348 |
with st.spinner("Analyzing text...", show_time=True):
|
349 |
model = load_ner_model()
|
350 |
+
|
351 |
# Measure NER model processing time
|
352 |
start_time_ner = time.time()
|
353 |
text_entities = model(text_for_ner) # Use the decrypted text
|
354 |
end_time_ner = time.time()
|
355 |
ner_processing_time = end_time_ner - start_time_ner
|
356 |
+
|
357 |
df = pd.DataFrame(text_entities)
|
358 |
+
|
359 |
if 'word' in df.columns:
|
360 |
# Ensure 'word' column is string type before applying regex
|
361 |
if df['word'].dtype == 'object':
|
|
|
366 |
else:
|
367 |
st.error("The 'word' column does not exist in the DataFrame. Cannot perform cleaning.")
|
368 |
st.stop() # Stop execution if the column is missing
|
369 |
+
|
370 |
# Replace empty strings with 'Unknown' and drop rows with NaN after cleaning
|
371 |
df = df.replace('', 'Unknown').dropna()
|
372 |
+
|
373 |
if df.empty:
|
374 |
st.warning("No entities were extracted from the uploaded text.")
|
375 |
st.stop()
|
376 |
+
|
377 |
# --- Add 'category' column to the DataFrame based on the grouped labels ---
|
378 |
df['category'] = df['entity_group'].map(LABEL_TO_CATEGORY_MAP)
|
379 |
# Handle cases where an entity_group might not have a category
|
380 |
df['category'] = df['category'].fillna('Uncategorized')
|
381 |
+
|
382 |
if comet_initialized:
|
383 |
experiment = Experiment(
|
384 |
api_key=COMET_API_KEY,
|
|
|
388 |
experiment.log_parameter("input_text_length", len(text_for_ner))
|
389 |
experiment.log_table("predicted_entities", df)
|
390 |
experiment.log_metric("ner_processing_time_seconds", ner_processing_time)
|
391 |
+
|
392 |
+
|
393 |
# --- Display Results ---
|
394 |
st.subheader("Extracted Entities", divider="rainbow")
|
395 |
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
|
396 |
df_styled = df.style.set_properties(**properties)
|
397 |
st.dataframe(df_styled, use_container_width=True)
|
398 |
+
|
399 |
with st.expander("See Glossary of tags"):
|
400 |
st.write('''
|
401 |
'**word**': ['entity extracted from your text data']
|
402 |
+
|
403 |
'**score**': ['accuracy score; how accurately a tag has been assigned to
|
404 |
a given entity']
|
405 |
+
|
406 |
'**entity_group**': ['label (tag) assigned to a given extracted entity']
|
407 |
+
|
408 |
'**start**': ['index of the start of the corresponding entity']
|
409 |
+
|
410 |
'**end**': ['index of the end of the corresponding entity']
|
411 |
+
|
412 |
'**category**': ['the broader category the entity belongs to']
|
413 |
''')
|
414 |
+
|
415 |
st.subheader("Grouped entities", divider="orange")
|
416 |
+
|
417 |
# Get unique categories and sort them for consistent tab order
|
418 |
unique_categories = sorted(df['category'].unique())
|
419 |
tabs_per_row = 4 # Adjust as needed for better layout
|
420 |
+
|
421 |
# Loop through categories in chunks to create rows of tabs
|
422 |
for i in range(0, len(unique_categories), tabs_per_row):
|
423 |
current_row_categories = unique_categories[i : i + tabs_per_row]
|
424 |
tabs = st.tabs(current_row_categories)
|
425 |
+
|
426 |
for j, category in enumerate(current_row_categories):
|
427 |
with tabs[j]:
|
428 |
df_filtered = df[df["category"] == category]
|
|
|
440 |
'category': [category]
|
441 |
}), hide_index=True)
|
442 |
st.divider()
|
443 |
+
|
444 |
# --- Visualizations ---
|
445 |
st.subheader("Tree map", divider="orange")
|
446 |
+
fig_treemap = px.treemap(df,
|
447 |
+
path=[px.Constant("all"), 'category', 'entity_group', 'word'],
|
448 |
values='score', color='category',
|
449 |
color_discrete_map={
|
450 |
+
'Persons': 'blue',
|
451 |
+
'Locations': 'green',
|
452 |
+
'Organizations': 'red',
|
453 |
+
'Miscellaneous': 'purple',
|
454 |
+
'Uncategorized': 'gray'
|
455 |
})
|
456 |
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
457 |
st.plotly_chart(fig_treemap)
|
458 |
if comet_initialized:
|
459 |
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
|
460 |
+
|
461 |
# Group by category and entity_group to get counts for pie and bar charts
|
462 |
grouped_counts = df.groupby('category').size().reset_index(name='count')
|
463 |
+
|
464 |
col1, col2 = st.columns(2)
|
465 |
with col1:
|
466 |
st.subheader("Pie Chart", divider="orange")
|
|
|
470 |
st.plotly_chart(fig_pie)
|
471 |
if comet_initialized:
|
472 |
experiment.log_figure(figure=fig_pie, figure_name="category_pie_chart")
|
473 |
+
|
474 |
with col2:
|
475 |
st.subheader("Bar Chart", divider="orange")
|
476 |
fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True,
|
|
|
478 |
st.plotly_chart(fig_bar)
|
479 |
if comet_initialized:
|
480 |
experiment.log_figure(figure=fig_bar, figure_name="category_bar_chart")
|
481 |
+
|
482 |
# --- Downloadable Content ---
|
483 |
dfa = pd.DataFrame(
|
484 |
data={
|
|
|
497 |
with zipfile.ZipFile(buf, "w") as myzip:
|
498 |
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
499 |
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
500 |
+
|
501 |
with stylable_container(
|
502 |
key="download_button",
|
503 |
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
|
|
|
510 |
)
|
511 |
if comet_initialized:
|
512 |
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
|
513 |
+
|
514 |
st.divider()
|
515 |
if comet_initialized:
|
516 |
experiment.end()
|
517 |
+
|
518 |
end_time_overall = time.time()
|
519 |
elapsed_time_overall = end_time_overall - start_time_overall
|
520 |
st.info(f"Results processed in **{elapsed_time_overall:.2f} seconds**.")
|
521 |
+
|
522 |
st.write(f"Number of times you requested results: **{st.session_state['file_upload_attempts']}/{max_attempts}**")
|