Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
from PIL import Image, ImageDraw, ImageFont | |
import io | |
def main(): | |
# Sidebar for dropdown, buttons, and instructions | |
st.sidebar.image("logo.png", use_container_width=True) # Display the logo at the top | |
st.sidebar.title("Label Generator") | |
st.sidebar.write("### Instructions:") | |
st.sidebar.write("1. Select a model from the dropdown.") | |
st.sidebar.write("2. Download the label.") | |
st.sidebar.write("3. Share your label in technical reports, announcements, etc.") | |
st.sidebar.markdown("[AI Energy Score Leaderboard](https://huggingface.co/spaces/AIEnergyScore/Leaderboard)") | |
# Read Data from CSV | |
try: | |
data_df = pd.read_csv("data.csv") | |
except FileNotFoundError: | |
st.sidebar.error("Could not find 'data.csv'! Please make sure it's present.") | |
return | |
# Ensure the CSV has required columns | |
required_columns = ["model", "provider", "date", "task", "hardware", "energy", "score"] | |
for col in required_columns: | |
if col not in data_df.columns: | |
st.sidebar.error(f"The CSV file must contain a column named '{col}'.") | |
return | |
# Dropdown for selecting a model | |
model_options = data_df["model"].unique().tolist() | |
selected_model = st.sidebar.selectbox("Select a Model:", model_options) | |
# Filter the data for the selected model | |
model_data = data_df[data_df["model"] == selected_model].iloc[0] | |
# Dynamically select the background image based on the score | |
try: | |
score = int(model_data["score"]) # Convert to int | |
background_path = f"{score}.png" # E.g., "1.png", "2.png" | |
background = Image.open(background_path).convert("RGBA") | |
# Proportional scaling to fit within the target size | |
target_size = (800, 600) # Maximum width and height | |
background.thumbnail(target_size, Image.Resampling.LANCZOS) | |
except FileNotFoundError: | |
st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.") | |
background = Image.open("default_background.png").convert("RGBA") | |
background.thumbnail(target_size, Image.Resampling.LANCZOS) # Resize default image proportionally | |
except ValueError: | |
st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.") | |
return | |
# Generate the label with text | |
generated_label = create_label(background, model_data) | |
# Display the label | |
st.image(generated_label, caption="Generated Label Preview") | |
# Download button for the label | |
img_buffer = io.BytesIO() | |
generated_label.save(img_buffer, format="PNG") | |
img_buffer.seek(0) | |
st.sidebar.download_button( | |
label="Download Label as PNG", | |
data=img_buffer, | |
file_name="AIEnergyScore.png", | |
mime="image/png" | |
) | |
def create_label(background_image, model_data): | |
""" | |
Create the label image by adding text from model_data to the background image. | |
""" | |
label_img = background_image.convert("RGBA") | |
draw = ImageDraw.Draw(label_img) | |
# Load the Inter variable font (no LAYOUT_RAQM) | |
try: | |
inter_font_path = "Inter-VariableFont_opsz,wght.ttf" | |
title_font = ImageFont.truetype(inter_font_path, 24) # Bold for title | |
details_font = ImageFont.truetype(inter_font_path, 20) # Medium for details | |
energy_font = ImageFont.truetype(inter_font_path, 22) # Medium for energy | |
# Set bold weight for title font | |
title_font = title_font.font_variant(weight=700) # Set font weight to bold | |
except Exception as e: | |
st.error(f"Font loading failed: {e}") | |
return label_img | |
# Define positions for each text group | |
title_x, title_y = 28, 124 | |
details_x, details_y = 375, 208 | |
energy_x, energy_y = 350, 388 | |
# Group 1: Title (Left-Justified, no prefixes) | |
draw.text((title_x, title_y), str(model_data['model']), font=title_font, fill="black") | |
draw.text((title_x, title_y + 30), str(model_data['provider']), font=title_font, fill="black") | |
# Group 2: Details (Right-Justified, no prefixes) | |
details_lines = [ | |
str(model_data['date']), | |
str(model_data['task']), | |
str(model_data['hardware']) | |
] | |
for i, line in enumerate(details_lines): | |
bbox = draw.textbbox((0, 0), line, font=details_font) | |
text_width = bbox[2] - bbox[0] | |
draw.text((details_x - text_width, details_y + i * 40), line, font=details_font, fill="black") | |
# Group 3: Energy (Bottom-Center, no prefixes) | |
energy_text = str(model_data['energy']) # Ensure this is a string | |
bbox = draw.textbbox((0, 0), energy_text, font=energy_font) | |
energy_text_width = bbox[2] - bbox[0] | |
draw.text((energy_x - energy_text_width // 2, energy_y), energy_text, font=energy_font, fill="black") | |
return label_img | |
if __name__ == "__main__": | |
main() | |