Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
from PIL import Image, ImageDraw, ImageFont | |
import io | |
def main(): | |
st.markdown( | |
""" | |
<style> | |
.stMultiSelect [data-baseweb="tag"] { | |
background-color: #3fa45bff !important; | |
color: white !important; | |
font-weight: medium; | |
border-radius: 5px; | |
padding: 5px 10px; | |
} | |
.stMultiSelect [data-baseweb="tag"]:hover { | |
background-color: #358d4d !important; | |
} | |
.stMultiSelect input { | |
color: black !important; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
with st.sidebar: | |
col1, col2 = st.columns([1, 5]) | |
with col1: | |
logo = Image.open("logo.png") | |
resized_logo = logo.resize((50, 50)) | |
st.image(resized_logo) | |
with col2: | |
st.markdown( | |
""" | |
<div style="display: flex; align-items: center; gap: 10px; margin: 0; padding: 0; font-family: 'Inter', sans-serif; font-size: 26px; font-weight: bold;"> | |
AI Energy Score | |
</div> | |
""", | |
unsafe_allow_html=True, | |
) | |
st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True) | |
st.sidebar.write("### Generate Label:") | |
task_order = [ | |
"Text Generation", "Image Generation", "Text Classification", "Image Classification", "Image Captioning", | |
"Summarization", "Speech-to-Text (ASR)", "Object Detection", "Question Answering", "Sentence Similarity" | |
] | |
st.sidebar.write("#### 1. Select task(s) to view models") | |
selected_tasks = st.sidebar.multiselect("", options=task_order, default=["Text Generation"]) | |
task_to_file = { | |
"Text Generation": "text_gen_energyscore.csv", | |
"Image Generation": "image_generation_energyscore.csv", | |
"Text Classification": "text_classification_energyscore.csv", | |
"Image Classification": "image_classification_energyscore.csv", | |
"Image Captioning": "image_caption_energyscore.csv", | |
"Summarization": "summarization_energyscore.csv", | |
"Speech-to-Text (ASR)": "asr_energyscore.csv", | |
"Object Detection": "object_detection_energyscore.csv", | |
"Question Answering": "question_answering_energyscore.csv", | |
"Sentence Similarity": "sentence_similarity_energyscore.csv" | |
} | |
st.sidebar.write("#### 2. Select a model to generate label") | |
default_model_data = { | |
'provider': "AI Provider", | |
'model': "Model Name", | |
'full_model': "AI Provider/Model Name", | |
'date': "", | |
'task': "", | |
'hardware': "", | |
'energy': "?", | |
'score': 5 | |
} | |
if not selected_tasks: | |
model_data = default_model_data | |
else: | |
dfs = [] | |
for task in selected_tasks: | |
file_name = task_to_file[task] | |
try: | |
df = pd.read_csv(file_name) | |
except FileNotFoundError: | |
st.sidebar.error(f"Could not find '{file_name}' for task {task}!") | |
continue | |
except Exception as e: | |
st.sidebar.error(f"Error reading '{file_name}' for task {task}: {e}") | |
continue | |
df['full_model'] = df['model'] | |
df[['provider', 'model']] = df['model'].str.split(pat='/', n=1, expand=True) | |
df['energy'] = (df['total_gpu_energy'] * 1000).round(2) # Convert to Wh and round to 2 decimal places | |
df['score'] = df['energy_score'].fillna(1).astype(int) | |
df['date'] = "February 2025" | |
df['hardware'] = "NVIDIA H100-80GB" | |
df['task'] = task | |
dfs.append(df) | |
if not dfs: | |
model_data = default_model_data | |
else: | |
data_df = pd.concat(dfs, ignore_index=True) | |
if data_df.empty: | |
model_data = default_model_data | |
else: | |
model_options = data_df["full_model"].unique().tolist() | |
selected_model = st.sidebar.selectbox( | |
"Scored Models", | |
model_options, | |
help="Start typing to search for a model" | |
) | |
model_data = data_df[data_df["full_model"] == selected_model].iloc[0] | |
st.sidebar.write("#### 3. Download the label") | |
try: | |
score = int(model_data["score"]) | |
background_path = f"{score}.png" | |
background = Image.open(background_path).convert("RGBA") | |
except FileNotFoundError: | |
st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.") | |
background = Image.open("default_background.png").convert("RGBA") | |
except ValueError: | |
st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.") | |
return | |
final_size = (520, 728) | |
generated_label = background.resize(final_size, Image.Resampling.LANCZOS) | |
st.image(generated_label, caption="Generated Label Preview", width=520) | |
img_buffer = io.BytesIO() | |
generated_label.save(img_buffer, format="PNG") | |
img_buffer.seek(0) | |
st.sidebar.download_button( | |
label="Download", | |
data=img_buffer, | |
file_name="AIEnergyScore.png", | |
mime="image/png" | |
) | |
if __name__ == "__main__": | |
main() | |