Label / app.py
bgamazay's picture
Update app.py
541593d verified
raw
history blame
5.46 kB
import streamlit as st
import pandas as pd
from PIL import Image, ImageDraw, ImageFont
import io
def main():
st.markdown(
"""
<style>
.stMultiSelect [data-baseweb="tag"] {
background-color: #3fa45bff !important;
color: white !important;
font-weight: medium;
border-radius: 5px;
padding: 5px 10px;
}
.stMultiSelect [data-baseweb="tag"]:hover {
background-color: #358d4d !important;
}
.stMultiSelect input {
color: black !important;
}
</style>
""",
unsafe_allow_html=True,
)
with st.sidebar:
col1, col2 = st.columns([1, 5])
with col1:
logo = Image.open("logo.png")
resized_logo = logo.resize((50, 50))
st.image(resized_logo)
with col2:
st.markdown(
"""
<div style="display: flex; align-items: center; gap: 10px; margin: 0; padding: 0; font-family: 'Inter', sans-serif; font-size: 26px; font-weight: bold;">
AI Energy Score
</div>
""",
unsafe_allow_html=True,
)
st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True)
st.sidebar.write("### Generate Label:")
task_order = [
"Text Generation", "Image Generation", "Text Classification", "Image Classification", "Image Captioning",
"Summarization", "Speech-to-Text (ASR)", "Object Detection", "Question Answering", "Sentence Similarity"
]
st.sidebar.write("#### 1. Select task(s) to view models")
selected_tasks = st.sidebar.multiselect("", options=task_order, default=["Text Generation"])
task_to_file = {
"Text Generation": "text_gen_energyscore.csv",
"Image Generation": "image_generation_energyscore.csv",
"Text Classification": "text_classification_energyscore.csv",
"Image Classification": "image_classification_energyscore.csv",
"Image Captioning": "image_caption_energyscore.csv",
"Summarization": "summarization_energyscore.csv",
"Speech-to-Text (ASR)": "asr_energyscore.csv",
"Object Detection": "object_detection_energyscore.csv",
"Question Answering": "question_answering_energyscore.csv",
"Sentence Similarity": "sentence_similarity_energyscore.csv"
}
st.sidebar.write("#### 2. Select a model to generate label")
default_model_data = {
'provider': "AI Provider",
'model': "Model Name",
'full_model': "AI Provider/Model Name",
'date': "",
'task': "",
'hardware': "",
'energy': "?",
'score': 5
}
if not selected_tasks:
model_data = default_model_data
else:
dfs = []
for task in selected_tasks:
file_name = task_to_file[task]
try:
df = pd.read_csv(file_name)
except FileNotFoundError:
st.sidebar.error(f"Could not find '{file_name}' for task {task}!")
continue
except Exception as e:
st.sidebar.error(f"Error reading '{file_name}' for task {task}: {e}")
continue
df['full_model'] = df['model']
df[['provider', 'model']] = df['model'].str.split(pat='/', n=1, expand=True)
df['energy'] = (df['total_gpu_energy'] * 1000).round(2) # Convert to Wh and round to 2 decimal places
df['score'] = df['energy_score'].fillna(1).astype(int)
df['date'] = "February 2025"
df['hardware'] = "NVIDIA H100-80GB"
df['task'] = task
dfs.append(df)
if not dfs:
model_data = default_model_data
else:
data_df = pd.concat(dfs, ignore_index=True)
if data_df.empty:
model_data = default_model_data
else:
model_options = data_df["full_model"].unique().tolist()
selected_model = st.sidebar.selectbox(
"Scored Models",
model_options,
help="Start typing to search for a model"
)
model_data = data_df[data_df["full_model"] == selected_model].iloc[0]
st.sidebar.write("#### 3. Download the label")
try:
score = int(model_data["score"])
background_path = f"{score}.png"
background = Image.open(background_path).convert("RGBA")
except FileNotFoundError:
st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.")
background = Image.open("default_background.png").convert("RGBA")
except ValueError:
st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.")
return
final_size = (520, 728)
generated_label = background.resize(final_size, Image.Resampling.LANCZOS)
st.image(generated_label, caption="Generated Label Preview", width=520)
img_buffer = io.BytesIO()
generated_label.save(img_buffer, format="PNG")
img_buffer.seek(0)
st.sidebar.download_button(
label="Download",
data=img_buffer,
file_name="AIEnergyScore.png",
mime="image/png"
)
if __name__ == "__main__":
main()