Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
from PIL import Image, ImageDraw, ImageFont | |
import io | |
def main(): | |
# Sidebar logo and title | |
with st.sidebar: | |
col1, col2 = st.columns([1, 5]) # Shrink the logo column and expand the text column | |
with col1: | |
logo = Image.open("logo.png") | |
resized_logo = logo.resize((40, 40)) # Resize the logo | |
st.image(resized_logo) | |
with col2: | |
st.markdown( | |
""" | |
<div style=" | |
display: flex; | |
align-items: center; | |
gap: 10px; | |
margin: 0; | |
padding: 0; | |
font-family: 'Inter', sans-serif; | |
font-size: 26px; | |
font-weight: bold;"> | |
AI Energy Score | |
</div> | |
""", | |
unsafe_allow_html=True, | |
) | |
# Sidebar instructions and link | |
st.sidebar.markdown( | |
""" | |
<h1 style="text-align: center; font-size: 24px; font-weight: bold;"> | |
Generate a Label to Display your | |
<a href="https://huggingface.co/spaces/AIEnergyScore/Leaderboard" target="_blank" style="text-decoration: none; color: inherit;"> | |
AI Energy Score | |
</a> | |
</h1> | |
""", | |
unsafe_allow_html=True, | |
) | |
st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True) | |
st.sidebar.write("### Instructions:") | |
st.sidebar.write("#### 1. Select task(s)") | |
# Define the ordered list of tasks. | |
task_order = [ | |
"Text Generation", | |
"Image Generation", | |
"Text Classification", | |
"Image Classification", | |
"Image Captioning", | |
"Summarization", | |
"ASR", | |
"Object Detection", | |
"Question Answering", | |
"Sentence Similarity" | |
] | |
# Multi-select dropdown for tasks. | |
selected_tasks = st.sidebar.multiselect("Select Task(s)", options=task_order, default=task_order) | |
if not selected_tasks: | |
st.sidebar.error("Please select at least one task.") | |
st.stop() | |
st.sidebar.write("#### 2. Select a model below") | |
# Mapping from task to CSV file name. | |
task_to_file = { | |
"Text Generation": "text_gen_energyscore.csv", | |
"Image Generation": "image_generation_energyscore.csv", | |
"Text Classification": "text_classification_energyscore.csv", | |
"Image Classification": "image_classification_energyscore.csv", | |
"Image Captioning": "image_caption_energyscore.csv", | |
"Summarization": "summarization_energyscore.csv", | |
"ASR": "asr_energyscore.csv", | |
"Object Detection": "object_detection_energyscore.csv", | |
"Question Answering": "question_answering_energyscore.csv", | |
"Sentence Similarity": "sentence_similarity_energyscore.csv" | |
} | |
dfs = [] | |
# Load and process each CSV corresponding to the selected tasks. | |
for task in selected_tasks: | |
file_name = task_to_file[task] | |
try: | |
df = pd.read_csv(file_name) | |
except FileNotFoundError: | |
st.sidebar.error(f"Could not find '{file_name}' for task {task}!") | |
continue | |
except Exception as e: | |
st.sidebar.error(f"Error reading '{file_name}' for task {task}: {e}") | |
continue | |
# Split the "Model" column into 'provider' (before the "/") and 'model' (after the "/") | |
df[['provider', 'model']] = df['Model'].str.split('/', 1, expand=True) | |
# Round total_gpu_energy to 3 decimal places and assign to 'energy' | |
df['energy'] = df['total_gpu_energy'].round(3) | |
# Use the energy_score column as 'score' | |
df['score'] = df['energy_score'].astype(int) | |
# Hardcode date and hardware | |
df['date'] = "February 2025" | |
df['hardware'] = "NVIDIA H100-80GB" | |
# Set the task from the file name mapping | |
df['task'] = task | |
dfs.append(df) | |
if not dfs: | |
st.sidebar.error("No data available for the selected task(s).") | |
return | |
data_df = pd.concat(dfs, ignore_index=True) | |
# Check required columns | |
required_columns = ["model", "provider", "date", "task", "hardware", "energy", "score"] | |
for col in required_columns: | |
if col not in data_df.columns: | |
st.sidebar.error(f"The CSV file must contain a column named '{col}'.") | |
return | |
model_options = data_df["model"].unique().tolist() | |
selected_model = st.sidebar.selectbox( | |
"Scored Models", | |
model_options, | |
help="Start typing to search for a model" | |
) | |
model_data = data_df[data_df["model"] == selected_model].iloc[0] | |
# Select background by score | |
try: | |
score = int(model_data["score"]) | |
background_path = f"{score}.png" | |
background = Image.open(background_path).convert("RGBA") | |
except FileNotFoundError: | |
st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.") | |
background = Image.open("default_background.png").convert("RGBA") | |
except ValueError: | |
st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.") | |
return | |
# Keep the final label size at 520×728 | |
final_size = (520, 728) | |
generated_label = create_label_single_pass(background, model_data, final_size) | |
st.image(generated_label, caption="Generated Label Preview", width=520) | |
img_buffer = io.BytesIO() | |
generated_label.save(img_buffer, format="PNG") | |
img_buffer.seek(0) | |
st.sidebar.download_button( | |
label="Download", | |
data=img_buffer, | |
file_name="AIEnergyScore.png", | |
mime="image/png" | |
) | |
st.sidebar.write("#### 3. Share your label! [Guidelines](https://huggingface.github.io/AIEnergyScore/#labelusage)") | |
st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True) | |
st.sidebar.write("### Key Links") | |
st.sidebar.write("- [Leaderboard](https://huggingface.co/spaces/AIEnergyScore/Leaderboard)") | |
st.sidebar.write("- [Submission Portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)") | |
st.sidebar.write("- [FAQ](https://huggingface.github.io/AIEnergyScore/#faq)") | |
st.sidebar.write("- [Documentation](https://huggingface.github.io/AIEnergyScore/#documentation)") | |
def create_label_single_pass(background_image, model_data, final_size=(520, 728)): | |
""" | |
Resizes the background to 520×728, then draws text onto it. | |
""" | |
# 1. Resize background to final_size | |
bg_resized = background_image.resize(final_size, Image.Resampling.LANCZOS) | |
draw = ImageDraw.Draw(bg_resized) | |
# 2. Load fonts at sizes appropriate for a 520×728 label | |
try: | |
title_font = ImageFont.truetype("Inter_24pt-Bold.ttf", size=27) | |
details_font = ImageFont.truetype("Inter_18pt-Regular.ttf", size=23) | |
energy_font = ImageFont.truetype("Inter_18pt-Medium.ttf", size=24) | |
except Exception as e: | |
st.error(f"Font loading failed: {e}") | |
return bg_resized | |
# 3. Place your text. | |
# You may need to experiment with x/y coordinates or font sizes | |
# to make it look right in 520×728. | |
title_x, title_y = 33, 150 | |
details_x, details_y = 480, 256 | |
energy_x, energy_y = 480, 472 | |
# Text 1 (title) - model and provider separated on different lines | |
draw.text((title_x, title_y), str(model_data['model']), font=title_font, fill="black") | |
draw.text((title_x, title_y + 38), str(model_data['provider']), font=title_font, fill="black") | |
# Text 2 (details) | |
details_lines = [ | |
str(model_data['date']), | |
str(model_data['task']), | |
str(model_data['hardware']) | |
] | |
for i, line in enumerate(details_lines): | |
bbox = draw.textbbox((0, 0), line, font=details_font) | |
text_width = bbox[2] - bbox[0] | |
# Right-justify the details text at details_x | |
draw.text((details_x - text_width, details_y + i*47), line, font=details_font, fill="black") | |
# Text 3 (energy) | |
energy_text = str(model_data['energy']) | |
bbox = draw.textbbox((0, 0), energy_text, font=energy_font) | |
energy_text_width = bbox[2] - bbox[0] | |
# Right-align the energy text at energy_x | |
draw.text((energy_x - energy_text_width, energy_y), energy_text, font=energy_font, fill="black") | |
return bg_resized | |
if __name__ == "__main__": | |
main() |