Label / app.py
bgamazay's picture
Update app.py
bde2fbd verified
raw
history blame
5.53 kB
import streamlit as st
import pandas as pd
from PIL import Image, ImageDraw, ImageFont
import io
def main():
# Sidebar logo and title
st.sidebar.image("logo.png", use_container_width=True) # Display the logo at the top
st.sidebar.title("Label Generator")
st.sidebar.markdown("For [AI Energy Score Leaderboard](https://huggingface.co/spaces/AIEnergyScore/Leaderboard)")
# Initialize data_df
data_df = None
# Read Data from CSV
try:
data_df = pd.read_csv("data.csv")
except FileNotFoundError:
st.sidebar.error("Could not find 'data.csv'! Please make sure it's present.")
return
except Exception as e:
st.sidebar.error(f"Error reading 'data.csv': {e}")
return
# Ensure the CSV has required columns
required_columns = ["model", "provider", "date", "task", "hardware", "energy", "score"]
for col in required_columns:
if col not in data_df.columns:
st.sidebar.error(f"The CSV file must contain a column named '{col}'.")
return
# Dropdown for selecting a model
st.sidebar.write("### Instructions:")
st.sidebar.write("#### 1. Select a model below")
model_options = data_df["model"].unique().tolist() # Get model options
selected_model = st.sidebar.selectbox(
"Scored Models", model_options, help="Start typing to search for a model"
) # Searchable dropdown
# Add step 2 instructions and move the Download button
st.sidebar.write("#### 2. Download the label")
# Filter the data for the selected model
model_data = data_df[data_df["model"] == selected_model].iloc[0]
# Dynamically select the background image based on the score
try:
score = int(model_data["score"]) # Convert to int
background_path = f"{score}.png" # E.g., "1.png", "2.png"
background = Image.open(background_path).convert("RGBA")
# Proportional scaling to fit within the target size
target_size = (800, 600) # Maximum width and height
background.thumbnail(target_size, Image.Resampling.LANCZOS)
except FileNotFoundError:
st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.")
background = Image.open("default_background.png").convert("RGBA")
background.thumbnail(target_size, Image.Resampling.LANCZOS) # Resize default image proportionally
except ValueError:
st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.")
return
# Generate the label with text
generated_label = create_label(background, model_data)
# Display the label
st.image(generated_label, caption="Generated Label Preview")
# Download button for the label
img_buffer = io.BytesIO()
generated_label.save(img_buffer, format="PNG")
img_buffer.seek(0)
st.sidebar.download_button(
label="Download",
data=img_buffer,
file_name="AIEnergyScore.png",
mime="image/png"
)
# Step 3 instructions
st.sidebar.write("#### 3. Share your label in technical reports, announcements, etc.")
def create_label(background_image, model_data):
"""
Create the label image by adding text from model_data to the background image.
Render at high resolution and scale down for sharper output.
"""
# Scale factor for high resolution rendering
scale_factor = 2
original_size = background_image.size
high_res_size = (original_size[0] * scale_factor, original_size[1] * scale_factor)
# Resize background proportionally for high resolution
high_res_image = background_image.resize(high_res_size, Image.Resampling.LANCZOS)
draw = ImageDraw.Draw(high_res_image)
# Load fonts with scaled sizes
try:
title_font = ImageFont.truetype("Inter_24pt-Bold.ttf", size=22 * scale_factor)
details_font = ImageFont.truetype("Inter_18pt-Regular.ttf", size=18 * scale_factor)
energy_font = ImageFont.truetype("Inter_18pt-Medium.ttf", size=20 * scale_factor)
except Exception as e:
st.error(f"Font loading failed: {e}")
return high_res_image
# Define scaled positions for text
title_x, title_y = 28 * scale_factor, 128 * scale_factor
details_x, details_y = 375 * scale_factor, 210 * scale_factor
energy_x, energy_y = 350 * scale_factor, 390 * scale_factor
# Group 1: Title (Bold)
draw.text((title_x, title_y), str(model_data['model']), font=title_font, fill="black")
draw.text((title_x, title_y + 30 * scale_factor), str(model_data['provider']), font=title_font, fill="black")
# Group 2: Details (Right-Justified)
details_lines = [
str(model_data['date']),
str(model_data['task']),
str(model_data['hardware'])
]
for i, line in enumerate(details_lines):
bbox = draw.textbbox((0, 0), line, font=details_font)
text_width = bbox[2] - bbox[0]
draw.text((details_x - text_width, details_y + i * 40 * scale_factor), line, font=details_font, fill="black")
# Group 3: Energy (Bottom-Center)
energy_text = str(model_data['energy'])
bbox = draw.textbbox((0, 0), energy_text, font=energy_font)
energy_text_width = bbox[2] - bbox[0]
draw.text((energy_x - energy_text_width // 2, energy_y), energy_text, font=energy_font, fill="black")
# Downscale to original size
final_image = high_res_image.resize(original_size, Image.Resampling.LANCZOS)
return final_image
if __name__ == "__main__":
main()