Spaces:
Running
Running
Upload 4 files
Browse files- app.py +110 -0
- background.png +0 -0
- data.csv +4 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 4 |
+
import io
|
| 5 |
+
|
| 6 |
+
def main():
|
| 7 |
+
# 1. Page Title
|
| 8 |
+
st.title("AI Energy Score Label Generator")
|
| 9 |
+
|
| 10 |
+
# 2. Read Data from CSV
|
| 11 |
+
# Using pandas to read the 'data.csv' file
|
| 12 |
+
# Make sure 'data.csv' is in the same folder as 'app.py'
|
| 13 |
+
try:
|
| 14 |
+
data_df = pd.read_csv("data.csv")
|
| 15 |
+
except FileNotFoundError:
|
| 16 |
+
st.error("Could not find 'data.csv'! Please make sure it's present.")
|
| 17 |
+
return
|
| 18 |
+
|
| 19 |
+
# 3. Ensure the CSV has a "Model" column
|
| 20 |
+
if "Model" not in data_df.columns:
|
| 21 |
+
st.error("The CSV file must contain a column named 'Model'.")
|
| 22 |
+
return
|
| 23 |
+
|
| 24 |
+
# 4. Create a dropdown list based on unique values in the 'Model' column
|
| 25 |
+
model_options = data_df["Model"].unique().tolist()
|
| 26 |
+
selected_model = st.selectbox("Select a Model:", model_options)
|
| 27 |
+
|
| 28 |
+
# 5. Filter the data for the selected model
|
| 29 |
+
model_data = data_df[data_df["Model"] == selected_model].iloc[0]
|
| 30 |
+
|
| 31 |
+
# 6. Load the background image for the label
|
| 32 |
+
# Make sure 'background.png' is in the same folder as 'app.py'
|
| 33 |
+
try:
|
| 34 |
+
background = Image.open("background.png")
|
| 35 |
+
except FileNotFoundError:
|
| 36 |
+
st.error("Could not find 'background.png'! Please make sure it's present.")
|
| 37 |
+
return
|
| 38 |
+
|
| 39 |
+
# 7. Overlay the data on the image
|
| 40 |
+
# We'll create a function to do this cleanly.
|
| 41 |
+
generated_label = create_label(background, model_data)
|
| 42 |
+
|
| 43 |
+
# 8. Display the generated label in the Streamlit app
|
| 44 |
+
st.image(generated_label, caption="Generated Label Preview")
|
| 45 |
+
|
| 46 |
+
# 9. Provide a download button
|
| 47 |
+
# We'll create an in-memory file to let user download the image.
|
| 48 |
+
img_buffer = io.BytesIO()
|
| 49 |
+
generated_label.save(img_buffer, format="PNG")
|
| 50 |
+
img_buffer.seek(0)
|
| 51 |
+
|
| 52 |
+
st.download_button(
|
| 53 |
+
label="Download Label as PNG",
|
| 54 |
+
data=img_buffer,
|
| 55 |
+
file_name="AIEnergyScore.png",
|
| 56 |
+
mime="image/png"
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
def create_label(background_image, model_data):
|
| 60 |
+
"""
|
| 61 |
+
This function takes a background image and a row (model_data) from the CSV,
|
| 62 |
+
then draws text on the image. Finally, returns the modified image object.
|
| 63 |
+
"""
|
| 64 |
+
# Convert background to a format that can be edited (RGBA mode).
|
| 65 |
+
label_img = background_image.convert("RGBA")
|
| 66 |
+
|
| 67 |
+
# Create a Drawing context
|
| 68 |
+
draw = ImageDraw.Draw(label_img)
|
| 69 |
+
|
| 70 |
+
# Choose a font and size. Change path/size as needed.
|
| 71 |
+
# If you don't have a custom font file, you can use a PIL built-in font.
|
| 72 |
+
try:
|
| 73 |
+
font = ImageFont.truetype("Roboto-Regular.ttf", 20) # or "Arial.ttf", etc.
|
| 74 |
+
except:
|
| 75 |
+
# Fallback to a default PIL font if 'arial.ttf' is not found
|
| 76 |
+
font = ImageFont.load_default()
|
| 77 |
+
|
| 78 |
+
# You can customize the positions, colors, etc. For instance:
|
| 79 |
+
# We'll just place the text in a simple stacked format at a fixed position.
|
| 80 |
+
# Position variables (x, y) - Adjust as needed.
|
| 81 |
+
x_position = 50
|
| 82 |
+
y_position = 50
|
| 83 |
+
line_spacing = 30
|
| 84 |
+
|
| 85 |
+
# Extracting data from the row. Customize these lines based on your CSV columns.
|
| 86 |
+
model_name = f"Model: {model_data['Model']}"
|
| 87 |
+
if 'Task' in model_data:
|
| 88 |
+
task = f"Task: {model_data['Task']}"
|
| 89 |
+
else:
|
| 90 |
+
task = "Task: N/A"
|
| 91 |
+
if 'date' in model_data:
|
| 92 |
+
date = f"Date: {model_data['Date']}"
|
| 93 |
+
else:
|
| 94 |
+
date = "Date: N/A"
|
| 95 |
+
if 'Energy' in model_data:
|
| 96 |
+
energy = f"Energy: {model_data['Energy']}"
|
| 97 |
+
else:
|
| 98 |
+
energy = "Energy: N/A"
|
| 99 |
+
|
| 100 |
+
text_lines = [model_name, task, date, energy]
|
| 101 |
+
|
| 102 |
+
# Draw each line on the image
|
| 103 |
+
for line in text_lines:
|
| 104 |
+
draw.text((x_position, y_position), line, fill="black", font=font)
|
| 105 |
+
y_position += line_spacing
|
| 106 |
+
|
| 107 |
+
return label_img
|
| 108 |
+
|
| 109 |
+
if __name__ == "__main__":
|
| 110 |
+
main()
|
background.png
ADDED
|
data.csv
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Model,Task,Date,Energy
|
| 2 |
+
GPT2,text generation,Feb-25,122
|
| 3 |
+
SmolLm,text generation,Feb-25,1.23
|
| 4 |
+
Llama3.2,text generation,Feb-25,13213
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
pandas
|
| 3 |
+
Pillow
|