Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,13 +4,40 @@ from PIL import Image, ImageDraw, ImageFont
|
|
4 |
import io
|
5 |
|
6 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Sidebar logo and title
|
8 |
with st.sidebar:
|
9 |
-
col1, col2 = st.columns([1, 5])
|
10 |
|
11 |
with col1:
|
12 |
logo = Image.open("logo.png")
|
13 |
-
resized_logo = logo.resize((
|
14 |
st.image(resized_logo)
|
15 |
|
16 |
with col2:
|
@@ -31,11 +58,8 @@ def main():
|
|
31 |
unsafe_allow_html=True,
|
32 |
)
|
33 |
|
34 |
-
# (Removed the "Generate a Label to Display your AI Energy Score" section)
|
35 |
-
|
36 |
st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True)
|
37 |
|
38 |
-
# Update instructions header
|
39 |
st.sidebar.write("### Generate Label:")
|
40 |
|
41 |
# Define the ordered list of tasks.
|
@@ -52,8 +76,8 @@ def main():
|
|
52 |
"Sentence Similarity"
|
53 |
]
|
54 |
|
55 |
-
#
|
56 |
-
st.sidebar.
|
57 |
selected_tasks = st.sidebar.multiselect("", options=task_order, default=task_order)
|
58 |
|
59 |
# Mapping from task to CSV file name.
|
@@ -64,30 +88,27 @@ def main():
|
|
64 |
"Image Classification": "image_classification_energyscore.csv",
|
65 |
"Image Captioning": "image_caption_energyscore.csv",
|
66 |
"Summarization": "summarization_energyscore.csv",
|
67 |
-
"ASR": "asr_energyscore.csv",
|
68 |
"Object Detection": "object_detection_energyscore.csv",
|
69 |
"Question Answering": "question_answering_energyscore.csv",
|
70 |
"Sentence Similarity": "sentence_similarity_energyscore.csv"
|
71 |
}
|
72 |
|
73 |
-
# Default placeholder model data.
|
74 |
default_model_data = {
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
}
|
84 |
|
85 |
if not selected_tasks:
|
86 |
-
# If no tasks are selected, use generic placeholder.
|
87 |
model_data = default_model_data
|
88 |
else:
|
89 |
dfs = []
|
90 |
-
# Load and process each CSV corresponding to the selected tasks.
|
91 |
for task in selected_tasks:
|
92 |
file_name = task_to_file[task]
|
93 |
try:
|
@@ -99,17 +120,12 @@ def main():
|
|
99 |
st.sidebar.error(f"Error reading '{file_name}' for task {task}: {e}")
|
100 |
continue
|
101 |
|
102 |
-
# Save the original full model string and then split the "model" column
|
103 |
df['full_model'] = df['model']
|
104 |
df[['provider', 'model']] = df['model'].str.split(pat='/', n=1, expand=True)
|
105 |
-
# Round total_gpu_energy to 3 decimal places and assign to 'energy'
|
106 |
df['energy'] = df['total_gpu_energy'].round(3)
|
107 |
-
# Use the energy_score column as 'score' (fill missing values with 1 to avoid casting errors)
|
108 |
df['score'] = df['energy_score'].fillna(1).astype(int)
|
109 |
-
# Hardcode date and hardware
|
110 |
df['date'] = "February 2025"
|
111 |
df['hardware'] = "NVIDIA H100-80GB"
|
112 |
-
# Set the task from the file name mapping
|
113 |
df['task'] = task
|
114 |
|
115 |
dfs.append(df)
|
@@ -121,7 +137,6 @@ def main():
|
|
121 |
if data_df.empty:
|
122 |
model_data = default_model_data
|
123 |
else:
|
124 |
-
# In the scored model dropdown show the full model string.
|
125 |
model_options = data_df["full_model"].unique().tolist()
|
126 |
selected_model = st.sidebar.selectbox(
|
127 |
"Scored Models",
|
@@ -130,10 +145,9 @@ def main():
|
|
130 |
)
|
131 |
model_data = data_df[data_df["full_model"] == selected_model].iloc[0]
|
132 |
|
133 |
-
st.sidebar.write("#### 2. Select a model
|
134 |
st.sidebar.write("#### 3. Download the label")
|
135 |
|
136 |
-
# Select background by score (using generic placeholder score=5 if applicable)
|
137 |
try:
|
138 |
score = int(model_data["score"])
|
139 |
background_path = f"{score}.png"
|
@@ -145,7 +159,6 @@ def main():
|
|
145 |
st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.")
|
146 |
return
|
147 |
|
148 |
-
# Keep the final label size at 520×728
|
149 |
final_size = (520, 728)
|
150 |
generated_label = create_label_single_pass(background, model_data, final_size)
|
151 |
|
@@ -172,14 +185,9 @@ def main():
|
|
172 |
|
173 |
|
174 |
def create_label_single_pass(background_image, model_data, final_size=(520, 728)):
|
175 |
-
"""
|
176 |
-
Resizes the background to 520×728, then draws text onto it.
|
177 |
-
"""
|
178 |
-
# 1. Resize background to final_size
|
179 |
bg_resized = background_image.resize(final_size, Image.Resampling.LANCZOS)
|
180 |
draw = ImageDraw.Draw(bg_resized)
|
181 |
|
182 |
-
# 2. Load fonts at sizes appropriate for a 520×728 label
|
183 |
try:
|
184 |
title_font = ImageFont.truetype("Inter_24pt-Bold.ttf", size=27)
|
185 |
details_font = ImageFont.truetype("Inter_18pt-Regular.ttf", size=23)
|
@@ -188,37 +196,22 @@ def create_label_single_pass(background_image, model_data, final_size=(520, 728)
|
|
188 |
st.error(f"Font loading failed: {e}")
|
189 |
return bg_resized
|
190 |
|
191 |
-
# 3. Place your text.
|
192 |
-
# Flip the order so that the provider (AI Developer) is shown first and the model name second.
|
193 |
title_x, title_y = 33, 150
|
194 |
details_x, details_y = 480, 256
|
195 |
energy_x, energy_y = 480, 472
|
196 |
|
197 |
-
# Text 1 (title) – show provider first then model name
|
198 |
draw.text((title_x, title_y), str(model_data['provider']), font=title_font, fill="black")
|
199 |
draw.text((title_x, title_y + 38), str(model_data['model']), font=title_font, fill="black")
|
200 |
|
201 |
-
|
202 |
-
details_lines = [
|
203 |
-
str(model_data['date']),
|
204 |
-
str(model_data['task']),
|
205 |
-
str(model_data['hardware'])
|
206 |
-
]
|
207 |
for i, line in enumerate(details_lines):
|
208 |
bbox = draw.textbbox((0, 0), line, font=details_font)
|
209 |
-
|
210 |
-
# Right-justify the details text at details_x
|
211 |
-
draw.text((details_x - text_width, details_y + i * 47), line, font=details_font, fill="black")
|
212 |
|
213 |
-
|
214 |
-
energy_text = str(model_data['energy'])
|
215 |
-
bbox = draw.textbbox((0, 0), energy_text, font=energy_font)
|
216 |
-
energy_text_width = bbox[2] - bbox[0]
|
217 |
-
# Right-align the energy text at energy_x
|
218 |
-
draw.text((energy_x - energy_text_width, energy_y), energy_text, font=energy_font, fill="black")
|
219 |
|
220 |
return bg_resized
|
221 |
|
222 |
|
223 |
if __name__ == "__main__":
|
224 |
-
main()
|
|
|
4 |
import io
|
5 |
|
6 |
def main():
|
7 |
+
# Inject custom CSS to change the color of selected tasks
|
8 |
+
st.markdown(
|
9 |
+
"""
|
10 |
+
<style>
|
11 |
+
/* Change background color of selected items */
|
12 |
+
.stMultiSelect [data-baseweb="tag"] {
|
13 |
+
background-color: #3fa45bff !important; /* Custom green */
|
14 |
+
color: white !important; /* White text */
|
15 |
+
font-weight: bold;
|
16 |
+
border-radius: 5px;
|
17 |
+
padding: 5px 10px;
|
18 |
+
}
|
19 |
+
|
20 |
+
/* Change hover effect */
|
21 |
+
.stMultiSelect [data-baseweb="tag"]:hover {
|
22 |
+
background-color: #358d4d !important;
|
23 |
+
}
|
24 |
+
|
25 |
+
/* Style the dropdown input field */
|
26 |
+
.stMultiSelect input {
|
27 |
+
color: black !important;
|
28 |
+
}
|
29 |
+
</style>
|
30 |
+
""",
|
31 |
+
unsafe_allow_html=True,
|
32 |
+
)
|
33 |
+
|
34 |
# Sidebar logo and title
|
35 |
with st.sidebar:
|
36 |
+
col1, col2 = st.columns([1, 5])
|
37 |
|
38 |
with col1:
|
39 |
logo = Image.open("logo.png")
|
40 |
+
resized_logo = logo.resize((50, 50))
|
41 |
st.image(resized_logo)
|
42 |
|
43 |
with col2:
|
|
|
58 |
unsafe_allow_html=True,
|
59 |
)
|
60 |
|
|
|
|
|
61 |
st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True)
|
62 |
|
|
|
63 |
st.sidebar.write("### Generate Label:")
|
64 |
|
65 |
# Define the ordered list of tasks.
|
|
|
76 |
"Sentence Similarity"
|
77 |
]
|
78 |
|
79 |
+
# Task selection
|
80 |
+
st.sidebar.write("#### 1. Select task(s) to view models")
|
81 |
selected_tasks = st.sidebar.multiselect("", options=task_order, default=task_order)
|
82 |
|
83 |
# Mapping from task to CSV file name.
|
|
|
88 |
"Image Classification": "image_classification_energyscore.csv",
|
89 |
"Image Captioning": "image_caption_energyscore.csv",
|
90 |
"Summarization": "summarization_energyscore.csv",
|
91 |
+
"Speech-to-Text (ASR)": "asr_energyscore.csv",
|
92 |
"Object Detection": "object_detection_energyscore.csv",
|
93 |
"Question Answering": "question_answering_energyscore.csv",
|
94 |
"Sentence Similarity": "sentence_similarity_energyscore.csv"
|
95 |
}
|
96 |
|
|
|
97 |
default_model_data = {
|
98 |
+
'provider': "AI Provider",
|
99 |
+
'model': "Model Name",
|
100 |
+
'full_model': "AI Provider/Model Name",
|
101 |
+
'date': "",
|
102 |
+
'task': "",
|
103 |
+
'hardware': "",
|
104 |
+
'energy': "?",
|
105 |
+
'score': 5
|
106 |
}
|
107 |
|
108 |
if not selected_tasks:
|
|
|
109 |
model_data = default_model_data
|
110 |
else:
|
111 |
dfs = []
|
|
|
112 |
for task in selected_tasks:
|
113 |
file_name = task_to_file[task]
|
114 |
try:
|
|
|
120 |
st.sidebar.error(f"Error reading '{file_name}' for task {task}: {e}")
|
121 |
continue
|
122 |
|
|
|
123 |
df['full_model'] = df['model']
|
124 |
df[['provider', 'model']] = df['model'].str.split(pat='/', n=1, expand=True)
|
|
|
125 |
df['energy'] = df['total_gpu_energy'].round(3)
|
|
|
126 |
df['score'] = df['energy_score'].fillna(1).astype(int)
|
|
|
127 |
df['date'] = "February 2025"
|
128 |
df['hardware'] = "NVIDIA H100-80GB"
|
|
|
129 |
df['task'] = task
|
130 |
|
131 |
dfs.append(df)
|
|
|
137 |
if data_df.empty:
|
138 |
model_data = default_model_data
|
139 |
else:
|
|
|
140 |
model_options = data_df["full_model"].unique().tolist()
|
141 |
selected_model = st.sidebar.selectbox(
|
142 |
"Scored Models",
|
|
|
145 |
)
|
146 |
model_data = data_df[data_df["full_model"] == selected_model].iloc[0]
|
147 |
|
148 |
+
st.sidebar.write("#### 2. Select a model to generate label")
|
149 |
st.sidebar.write("#### 3. Download the label")
|
150 |
|
|
|
151 |
try:
|
152 |
score = int(model_data["score"])
|
153 |
background_path = f"{score}.png"
|
|
|
159 |
st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.")
|
160 |
return
|
161 |
|
|
|
162 |
final_size = (520, 728)
|
163 |
generated_label = create_label_single_pass(background, model_data, final_size)
|
164 |
|
|
|
185 |
|
186 |
|
187 |
def create_label_single_pass(background_image, model_data, final_size=(520, 728)):
|
|
|
|
|
|
|
|
|
188 |
bg_resized = background_image.resize(final_size, Image.Resampling.LANCZOS)
|
189 |
draw = ImageDraw.Draw(bg_resized)
|
190 |
|
|
|
191 |
try:
|
192 |
title_font = ImageFont.truetype("Inter_24pt-Bold.ttf", size=27)
|
193 |
details_font = ImageFont.truetype("Inter_18pt-Regular.ttf", size=23)
|
|
|
196 |
st.error(f"Font loading failed: {e}")
|
197 |
return bg_resized
|
198 |
|
|
|
|
|
199 |
title_x, title_y = 33, 150
|
200 |
details_x, details_y = 480, 256
|
201 |
energy_x, energy_y = 480, 472
|
202 |
|
|
|
203 |
draw.text((title_x, title_y), str(model_data['provider']), font=title_font, fill="black")
|
204 |
draw.text((title_x, title_y + 38), str(model_data['model']), font=title_font, fill="black")
|
205 |
|
206 |
+
details_lines = [str(model_data['date']), str(model_data['task']), str(model_data['hardware'])]
|
|
|
|
|
|
|
|
|
|
|
207 |
for i, line in enumerate(details_lines):
|
208 |
bbox = draw.textbbox((0, 0), line, font=details_font)
|
209 |
+
draw.text((details_x - bbox[2], details_y + i * 47), line, font=details_font, fill="black")
|
|
|
|
|
210 |
|
211 |
+
draw.text((energy_x, energy_y), str(model_data['energy']), font=energy_font, fill="black")
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
return bg_resized
|
214 |
|
215 |
|
216 |
if __name__ == "__main__":
|
217 |
+
main()
|