Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ from PIL import Image, ImageDraw, ImageFont
|
|
4 |
import io
|
5 |
|
6 |
def main():
|
7 |
-
#
|
8 |
st.sidebar.title("AI Energy Score Label Generator")
|
9 |
st.sidebar.write("### Instructions:")
|
10 |
st.sidebar.write("1. Select a model from the dropdown.")
|
@@ -12,30 +12,30 @@ def main():
|
|
12 |
st.sidebar.write("3. Download the label as a PNG.")
|
13 |
st.sidebar.markdown("[Learn more about AI Energy Scores](https://example.com)")
|
14 |
|
15 |
-
#
|
16 |
try:
|
17 |
data_df = pd.read_csv("data.csv")
|
18 |
except FileNotFoundError:
|
19 |
st.sidebar.error("Could not find 'data.csv'! Please make sure it's present.")
|
20 |
return
|
21 |
|
22 |
-
#
|
23 |
required_columns = ["model", "provider", "date", "task", "hardware", "energy", "score"]
|
24 |
for col in required_columns:
|
25 |
if col not in data_df.columns:
|
26 |
st.sidebar.error(f"The CSV file must contain a column named '{col}'.")
|
27 |
return
|
28 |
|
29 |
-
#
|
30 |
model_options = data_df["model"].unique().tolist()
|
31 |
selected_model = st.sidebar.selectbox("Select a Model:", model_options)
|
32 |
|
33 |
-
#
|
34 |
model_data = data_df[data_df["model"] == selected_model].iloc[0]
|
35 |
|
36 |
-
#
|
37 |
try:
|
38 |
-
score = int(model_data["score"]) # Convert to int
|
39 |
background_path = f"{score}.png" # E.g., "1.png", "2.png"
|
40 |
background = Image.open(background_path).convert("RGBA")
|
41 |
except FileNotFoundError:
|
@@ -45,13 +45,13 @@ def main():
|
|
45 |
st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.")
|
46 |
return
|
47 |
|
48 |
-
#
|
49 |
generated_label = create_label(background, model_data)
|
50 |
|
51 |
-
#
|
52 |
st.image(generated_label, caption="Generated Label Preview")
|
53 |
|
54 |
-
#
|
55 |
img_buffer = io.BytesIO()
|
56 |
generated_label.save(img_buffer, format="PNG")
|
57 |
img_buffer.seek(0)
|
@@ -65,26 +65,25 @@ def main():
|
|
65 |
|
66 |
def create_label(background_image, model_data):
|
67 |
"""
|
68 |
-
|
69 |
-
then draws text on the image. Finally, returns the modified image object.
|
70 |
"""
|
71 |
label_img = background_image.convert("RGBA")
|
72 |
draw = ImageDraw.Draw(label_img)
|
73 |
|
74 |
-
# Load the Inter variable font
|
75 |
try:
|
76 |
inter_font_path = "Inter-VariableFont_opsz,wght.ttf"
|
77 |
-
title_font = ImageFont.truetype(inter_font_path, 16
|
78 |
-
details_font = ImageFont.truetype(inter_font_path, 12
|
79 |
-
energy_font = ImageFont.truetype(inter_font_path, 14
|
80 |
except Exception as e:
|
81 |
st.error(f"Font loading failed: {e}")
|
82 |
return label_img
|
83 |
|
84 |
-
# Define positions for
|
85 |
-
title_x, title_y = 20, 20 #
|
86 |
-
details_x, details_y =
|
87 |
-
energy_x, energy_y =
|
88 |
|
89 |
# Group 1: Title (Left-Justified)
|
90 |
draw.text((title_x, title_y), f"Model: {model_data['model']}", font=title_font, fill="black")
|
@@ -97,11 +96,13 @@ def create_label(background_image, model_data):
|
|
97 |
f"Hardware: {model_data['hardware']}"
|
98 |
]
|
99 |
for i, line in enumerate(details_lines):
|
100 |
-
|
|
|
101 |
|
102 |
# Group 3: Energy (Bottom-Center)
|
103 |
energy_text = f"Energy: {model_data['energy']}"
|
104 |
-
draw.
|
|
|
105 |
|
106 |
return label_img
|
107 |
|
|
|
4 |
import io
|
5 |
|
6 |
def main():
|
7 |
+
# Sidebar for dropdown, buttons, and instructions
|
8 |
st.sidebar.title("AI Energy Score Label Generator")
|
9 |
st.sidebar.write("### Instructions:")
|
10 |
st.sidebar.write("1. Select a model from the dropdown.")
|
|
|
12 |
st.sidebar.write("3. Download the label as a PNG.")
|
13 |
st.sidebar.markdown("[Learn more about AI Energy Scores](https://example.com)")
|
14 |
|
15 |
+
# Read Data from CSV
|
16 |
try:
|
17 |
data_df = pd.read_csv("data.csv")
|
18 |
except FileNotFoundError:
|
19 |
st.sidebar.error("Could not find 'data.csv'! Please make sure it's present.")
|
20 |
return
|
21 |
|
22 |
+
# Ensure the CSV has required columns
|
23 |
required_columns = ["model", "provider", "date", "task", "hardware", "energy", "score"]
|
24 |
for col in required_columns:
|
25 |
if col not in data_df.columns:
|
26 |
st.sidebar.error(f"The CSV file must contain a column named '{col}'.")
|
27 |
return
|
28 |
|
29 |
+
# Dropdown for selecting a model
|
30 |
model_options = data_df["model"].unique().tolist()
|
31 |
selected_model = st.sidebar.selectbox("Select a Model:", model_options)
|
32 |
|
33 |
+
# Filter the data for the selected model
|
34 |
model_data = data_df[data_df["model"] == selected_model].iloc[0]
|
35 |
|
36 |
+
# Dynamically select the background image based on the score
|
37 |
try:
|
38 |
+
score = int(model_data["score"]) # Convert to int
|
39 |
background_path = f"{score}.png" # E.g., "1.png", "2.png"
|
40 |
background = Image.open(background_path).convert("RGBA")
|
41 |
except FileNotFoundError:
|
|
|
45 |
st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.")
|
46 |
return
|
47 |
|
48 |
+
# Generate the label with text
|
49 |
generated_label = create_label(background, model_data)
|
50 |
|
51 |
+
# Display the label
|
52 |
st.image(generated_label, caption="Generated Label Preview")
|
53 |
|
54 |
+
# Download button for the label
|
55 |
img_buffer = io.BytesIO()
|
56 |
generated_label.save(img_buffer, format="PNG")
|
57 |
img_buffer.seek(0)
|
|
|
65 |
|
66 |
def create_label(background_image, model_data):
|
67 |
"""
|
68 |
+
Create the label image by adding text from model_data to the background image.
|
|
|
69 |
"""
|
70 |
label_img = background_image.convert("RGBA")
|
71 |
draw = ImageDraw.Draw(label_img)
|
72 |
|
73 |
+
# Load the Inter variable font (no LAYOUT_RAQM)
|
74 |
try:
|
75 |
inter_font_path = "Inter-VariableFont_opsz,wght.ttf"
|
76 |
+
title_font = ImageFont.truetype(inter_font_path, 16) # Bold for title
|
77 |
+
details_font = ImageFont.truetype(inter_font_path, 12) # Medium for details
|
78 |
+
energy_font = ImageFont.truetype(inter_font_path, 14) # Medium for energy
|
79 |
except Exception as e:
|
80 |
st.error(f"Font loading failed: {e}")
|
81 |
return label_img
|
82 |
|
83 |
+
# Define positions for each text group
|
84 |
+
title_x, title_y = 20, 20 # Top-left corner for title
|
85 |
+
details_x, details_y = label_img.width - 20, 20 # Top-right corner for details
|
86 |
+
energy_x, energy_y = label_img.width // 2, label_img.height - 50 # Center-bottom for energy
|
87 |
|
88 |
# Group 1: Title (Left-Justified)
|
89 |
draw.text((title_x, title_y), f"Model: {model_data['model']}", font=title_font, fill="black")
|
|
|
96 |
f"Hardware: {model_data['hardware']}"
|
97 |
]
|
98 |
for i, line in enumerate(details_lines):
|
99 |
+
text_width, _ = draw.textsize(line, font=details_font)
|
100 |
+
draw.text((details_x - text_width, details_y + i * 20), line, font=details_font, fill="black")
|
101 |
|
102 |
# Group 3: Energy (Bottom-Center)
|
103 |
energy_text = f"Energy: {model_data['energy']}"
|
104 |
+
energy_text_width, _ = draw.textsize(energy_text, font=energy_font)
|
105 |
+
draw.text((energy_x - energy_text_width // 2, energy_y), energy_text, font=energy_font, fill="black")
|
106 |
|
107 |
return label_img
|
108 |
|