import streamlit as st import pandas as pd from PIL import Image, ImageDraw, ImageFont import io def main(): # Sidebar logo and title with st.sidebar: col1, col2 = st.columns([1, 5]) # Shrink the logo column and expand the text column with col1: logo = Image.open("logo.png") resized_logo = logo.resize((40, 40)) # Resize the logo st.image(resized_logo) with col2: st.markdown( """
AI Energy Score
""", unsafe_allow_html=True, ) # Sidebar instructions and link st.sidebar.markdown( """

Generate a Label to Display your AI Energy Score

""", unsafe_allow_html=True, ) st.sidebar.markdown("
", unsafe_allow_html=True) st.sidebar.write("### Instructions:") st.sidebar.write("#### 1. Select task(s)") # Define the ordered list of tasks. task_order = [ "Text Generation", "Image Generation", "Text Classification", "Image Classification", "Image Captioning", "Summarization", "ASR", "Object Detection", "Question Answering", "Sentence Similarity" ] # Multi-select dropdown for tasks. selected_tasks = st.sidebar.multiselect("Select Task(s)", options=task_order, default=task_order) if not selected_tasks: st.sidebar.error("Please select at least one task.") st.stop() st.sidebar.write("#### 2. Select a model below") # Mapping from task to CSV file name. task_to_file = { "Text Generation": "text_gen_energyscore.csv", "Image Generation": "image_generation_energyscore.csv", "Text Classification": "text_classification_energyscore.csv", "Image Classification": "image_classification_energyscore.csv", "Image Captioning": "image_caption_energyscore.csv", "Summarization": "summarization_energyscore.csv", "ASR": "asr_energyscore.csv", "Object Detection": "object_detection_energyscore.csv", "Question Answering": "question_answering_energyscore.csv", "Sentence Similarity": "sentence_similarity_energyscore.csv" } dfs = [] # Load and process each CSV corresponding to the selected tasks. for task in selected_tasks: file_name = task_to_file[task] try: df = pd.read_csv(file_name) except FileNotFoundError: st.sidebar.error(f"Could not find '{file_name}' for task {task}!") continue except Exception as e: st.sidebar.error(f"Error reading '{file_name}' for task {task}: {e}") continue # Split the "model" column into 'provider' (before the "/") and 'model' (after the "/") df[['provider', 'model']] = df['model'].str.split('/', 1, expand=True) # Round total_gpu_energy to 3 decimal places and assign to 'energy' df['energy'] = df['total_gpu_energy'].round(3) # Use the energy_score column as 'score' df['score'] = df['energy_score'].astype(int) # Hardcode date and hardware df['date'] = "February 2025" df['hardware'] = "NVIDIA H100-80GB" # Set the task from the file name mapping df['task'] = task dfs.append(df) if not dfs: st.sidebar.error("No data available for the selected task(s).") return data_df = pd.concat(dfs, ignore_index=True) # Check required columns required_columns = ["model", "provider", "date", "task", "hardware", "energy", "score"] for col in required_columns: if col not in data_df.columns: st.sidebar.error(f"The CSV file must contain a column named '{col}'.") return model_options = data_df["model"].unique().tolist() selected_model = st.sidebar.selectbox( "Scored Models", model_options, help="Start typing to search for a model" ) model_data = data_df[data_df["model"] == selected_model].iloc[0] # Select background by score try: score = int(model_data["score"]) background_path = f"{score}.png" background = Image.open(background_path).convert("RGBA") except FileNotFoundError: st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.") background = Image.open("default_background.png").convert("RGBA") except ValueError: st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.") return # Keep the final label size at 520×728 final_size = (520, 728) generated_label = create_label_single_pass(background, model_data, final_size) st.image(generated_label, caption="Generated Label Preview", width=520) img_buffer = io.BytesIO() generated_label.save(img_buffer, format="PNG") img_buffer.seek(0) st.sidebar.download_button( label="Download", data=img_buffer, file_name="AIEnergyScore.png", mime="image/png" ) st.sidebar.write("#### 3. Share your label! [Guidelines](https://huggingface.github.io/AIEnergyScore/#labelusage)") st.sidebar.markdown("
", unsafe_allow_html=True) st.sidebar.write("### Key Links") st.sidebar.write("- [Leaderboard](https://huggingface.co/spaces/AIEnergyScore/Leaderboard)") st.sidebar.write("- [Submission Portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)") st.sidebar.write("- [FAQ](https://huggingface.github.io/AIEnergyScore/#faq)") st.sidebar.write("- [Documentation](https://huggingface.github.io/AIEnergyScore/#documentation)") def create_label_single_pass(background_image, model_data, final_size=(520, 728)): """ Resizes the background to 520×728, then draws text onto it. """ # 1. Resize background to final_size bg_resized = background_image.resize(final_size, Image.Resampling.LANCZOS) draw = ImageDraw.Draw(bg_resized) # 2. Load fonts at sizes appropriate for a 520×728 label try: title_font = ImageFont.truetype("Inter_24pt-Bold.ttf", size=27) details_font = ImageFont.truetype("Inter_18pt-Regular.ttf", size=23) energy_font = ImageFont.truetype("Inter_18pt-Medium.ttf", size=24) except Exception as e: st.error(f"Font loading failed: {e}") return bg_resized # 3. Place your text. # You may need to experiment with x/y coordinates or font sizes # to make it look right in 520×728. title_x, title_y = 33, 150 details_x, details_y = 480, 256 energy_x, energy_y = 480, 472 # Text 1 (title) - model and provider separated on different lines draw.text((title_x, title_y), str(model_data['model']), font=title_font, fill="black") draw.text((title_x, title_y + 38), str(model_data['provider']), font=title_font, fill="black") # Text 2 (details) details_lines = [ str(model_data['date']), str(model_data['task']), str(model_data['hardware']) ] for i, line in enumerate(details_lines): bbox = draw.textbbox((0, 0), line, font=details_font) text_width = bbox[2] - bbox[0] # Right-justify the details text at details_x draw.text((details_x - text_width, details_y + i*47), line, font=details_font, fill="black") # Text 3 (energy) energy_text = str(model_data['energy']) bbox = draw.textbbox((0, 0), energy_text, font=energy_font) energy_text_width = bbox[2] - bbox[0] # Right-align the energy text at energy_x draw.text((energy_x - energy_text_width, energy_y), energy_text, font=energy_font, fill="black") return bg_resized if __name__ == "__main__": main()