import streamlit as st import pandas as pd from PIL import Image, ImageDraw, ImageFont import io def main(): # Sidebar for dropdown, buttons, and instructions st.sidebar.title("AI Energy Score Label Generator") st.sidebar.write("### Instructions:") st.sidebar.write("1. Select a model from the dropdown.") st.sidebar.write("2. Review the label preview.") st.sidebar.write("3. Download the label as a PNG.") st.sidebar.markdown("[Learn more about AI Energy Scores](https://example.com)") # Read Data from CSV try: data_df = pd.read_csv("data.csv") except FileNotFoundError: st.sidebar.error("Could not find 'data.csv'! Please make sure it's present.") return # Ensure the CSV has required columns required_columns = ["model", "provider", "date", "task", "hardware", "energy", "score"] for col in required_columns: if col not in data_df.columns: st.sidebar.error(f"The CSV file must contain a column named '{col}'.") return # Dropdown for selecting a model model_options = data_df["model"].unique().tolist() selected_model = st.sidebar.selectbox("Select a Model:", model_options) # Filter the data for the selected model model_data = data_df[data_df["model"] == selected_model].iloc[0] # Dynamically select the background image based on the score try: score = int(model_data["score"]) # Convert to int background_path = f"{score}.png" # E.g., "1.png", "2.png" background = Image.open(background_path).convert("RGBA") except FileNotFoundError: st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.") background = Image.open("default_background.png").convert("RGBA") except ValueError: st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.") return # Generate the label with text generated_label = create_label(background, model_data) # Display the label st.image(generated_label, caption="Generated Label Preview") # Download button for the label img_buffer = io.BytesIO() generated_label.save(img_buffer, format="PNG") img_buffer.seek(0) st.sidebar.download_button( label="Download Label as PNG", data=img_buffer, file_name="AIEnergyScore.png", mime="image/png" ) def create_label(background_image, model_data): """ Create the label image by adding text from model_data to the background image. """ label_img = background_image.convert("RGBA") draw = ImageDraw.Draw(label_img) # Load the Inter variable font (no LAYOUT_RAQM) try: inter_font_path = "Inter-VariableFont_opsz,wght.ttf" title_font = ImageFont.truetype(inter_font_path, 16) # Bold for title details_font = ImageFont.truetype(inter_font_path, 12) # Medium for details energy_font = ImageFont.truetype(inter_font_path, 14) # Medium for energy except Exception as e: st.error(f"Font loading failed: {e}") return label_img # Define positions for each text group title_x, title_y = 20, 20 # Top-left corner for title details_x, details_y = label_img.width - 20, 20 # Top-right corner for details energy_x, energy_y = label_img.width // 2, label_img.height - 50 # Center-bottom for energy # Group 1: Title (Left-Justified) draw.text((title_x, title_y), f"Model: {model_data['model']}", font=title_font, fill="black") draw.text((title_x, title_y + 25), f"Provider: {model_data['provider']}", font=title_font, fill="black") # Group 2: Details (Right-Justified) details_lines = [ f"Date: {model_data['date']}", f"Task: {model_data['task']}", f"Hardware: {model_data['hardware']}" ] for i, line in enumerate(details_lines): # Use textbbox to calculate text width bbox = draw.textbbox((0, 0), line, font=details_font) text_width = bbox[2] - bbox[0] # Right - Left draw.text((details_x - text_width, details_y + i * 20), line, font=details_font, fill="black") # Group 3: Energy (Bottom-Center) energy_text = f"Energy: {model_data['energy']}" bbox = draw.textbbox((0, 0), energy_text, font=energy_font) energy_text_width = bbox[2] - bbox[0] draw.text((energy_x - energy_text_width // 2, energy_y), energy_text, font=energy_font, fill="black") return label_img if __name__ == "__main__": main()