import streamlit as st import pandas as pd from PIL import Image, ImageDraw, ImageFont import io def main(): # 1. Sidebar for Dropdown, Buttons, and Instructions st.sidebar.title("AI Energy Score Label Generator") st.sidebar.write("### Instructions:") st.sidebar.write("1. Select a model from the dropdown.") st.sidebar.write("2. Review the label preview.") st.sidebar.write("3. Download the label as a PNG.") st.sidebar.markdown("[Learn more about AI Energy Scores](https://example.com)") # 2. Read Data from CSV try: data_df = pd.read_csv("data.csv") except FileNotFoundError: st.sidebar.error("Could not find 'data.csv'! Please make sure it's present.") return # 3. Ensure the CSV has required columns required_columns = ["model", "provider", "date", "task", "hardware", "energy", "score"] for col in required_columns: if col not in data_df.columns: st.sidebar.error(f"The CSV file must contain a column named '{col}'.") return # 4. Create a dropdown list based on unique values in the 'model' column model_options = data_df["model"].unique().tolist() selected_model = st.sidebar.selectbox("Select a Model:", model_options) # 5. Filter the data for the selected model model_data = data_df[data_df["model"] == selected_model].iloc[0] # 6. Dynamically select the background image based on the score try: score = int(model_data["score"]) # Convert to int to avoid issues background_path = f"{score}.png" # E.g., "1.png", "2.png" background = Image.open(background_path).convert("RGBA") except FileNotFoundError: st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.") background = Image.open("default_background.png").convert("RGBA") except ValueError: st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.") return # 7. Overlay the data on the image generated_label = create_label(background, model_data) # 8. Display the generated label in the main area st.image(generated_label, caption="Generated Label Preview") # 9. Provide a download button in the sidebar img_buffer = io.BytesIO() generated_label.save(img_buffer, format="PNG") img_buffer.seek(0) st.sidebar.download_button( label="Download Label as PNG", data=img_buffer, file_name="AIEnergyScore.png", mime="image/png" ) def create_label(background_image, model_data): """ This function takes a background image and a row (model_data) from the CSV, then draws text on the image. Finally, returns the modified image object. """ label_img = background_image.convert("RGBA") draw = ImageDraw.Draw(label_img) # Load the Inter variable font try: inter_font_path = "Inter-VariableFont_opsz,wght.ttf" title_font = ImageFont.truetype(inter_font_path, 16, layout_engine=ImageFont.LAYOUT_RAQM) details_font = ImageFont.truetype(inter_font_path, 12, layout_engine=ImageFont.LAYOUT_RAQM) energy_font = ImageFont.truetype(inter_font_path, 14, layout_engine=ImageFont.LAYOUT_RAQM) except Exception as e: st.error(f"Font loading failed: {e}") return label_img # Define positions for the text groups (easy to tweak!) title_x, title_y = 20, 20 # Position for title group details_x, details_y = 300, 20 # Position for details group energy_x, energy_y = 150, 400 # Position for energy group # Group 1: Title (Left-Justified) draw.text((title_x, title_y), f"Model: {model_data['model']}", font=title_font, fill="black") draw.text((title_x, title_y + 25), f"Provider: {model_data['provider']}", font=title_font, fill="black") # Group 2: Details (Right-Justified) details_lines = [ f"Date: {model_data['date']}", f"Task: {model_data['task']}", f"Hardware: {model_data['hardware']}" ] for i, line in enumerate(details_lines): draw.text((details_x, details_y + i * 20), line, font=details_font, fill="black", anchor="ra") # Group 3: Energy (Bottom-Center) energy_text = f"Energy: {model_data['energy']}" draw.text((energy_x, energy_y), energy_text, font=energy_font, fill="black") return label_img if __name__ == "__main__": main()