import streamlit as st import pandas as pd from PIL import Image, ImageDraw, ImageFont import io def main(): # Inject custom CSS to change the color of selected tasks st.markdown( """ """, unsafe_allow_html=True, ) # Sidebar logo and title with st.sidebar: col1, col2 = st.columns([1, 5]) with col1: logo = Image.open("logo.png") resized_logo = logo.resize((50, 50)) st.image(resized_logo) with col2: st.markdown( """
AI Energy Score
""", unsafe_allow_html=True, ) st.sidebar.markdown("
", unsafe_allow_html=True) st.sidebar.write("### Generate Label:") # Define the ordered list of tasks. task_order = [ "Text Generation", "Image Generation", "Text Classification", "Image Classification", "Image Captioning", "Summarization", "Speech-to-Text (ASR)", "Object Detection", "Question Answering", "Sentence Similarity" ] # Task selection st.sidebar.write("#### 1. Select task(s) to view models") selected_tasks = st.sidebar.multiselect("", options=task_order, default=["Text Generation"]) # Mapping from task to CSV file name. task_to_file = { "Text Generation": "text_gen_energyscore.csv", "Image Generation": "image_generation_energyscore.csv", "Text Classification": "text_classification_energyscore.csv", "Image Classification": "image_classification_energyscore.csv", "Image Captioning": "image_caption_energyscore.csv", "Summarization": "summarization_energyscore.csv", "Speech-to-Text (ASR)": "asr_energyscore.csv", "Object Detection": "object_detection_energyscore.csv", "Question Answering": "question_answering_energyscore.csv", "Sentence Similarity": "sentence_similarity_energyscore.csv" } st.sidebar.write("#### 2. Select a model to generate label") default_model_data = { 'provider': "AI Provider", 'model': "Model Name", 'full_model': "AI Provider/Model Name", 'date': "", 'task': "", 'hardware': "", 'energy': "?", 'score': 5 } if not selected_tasks: model_data = default_model_data else: dfs = [] for task in selected_tasks: file_name = task_to_file[task] try: df = pd.read_csv(file_name) except FileNotFoundError: st.sidebar.error(f"Could not find '{file_name}' for task {task}!") continue except Exception as e: st.sidebar.error(f"Error reading '{file_name}' for task {task}: {e}") continue df['full_model'] = df['model'] df[['provider', 'model']] = df['model'].str.split(pat='/', n=1, expand=True) # Multiply raw energy by 1000 to convert to Wh, then round to 2 decimals df['energy'] = (df['total_gpu_energy'] * 1000).round(2) df['score'] = df['energy_score'].fillna(1).astype(int) df['date'] = "February 2025" df['hardware'] = "NVIDIA H100-80GB" df['task'] = task dfs.append(df) if not dfs: model_data = default_model_data else: data_df = pd.concat(dfs, ignore_index=True) if data_df.empty: model_data = default_model_data else: model_options = data_df["full_model"].unique().tolist() selected_model = st.sidebar.selectbox( "Scored Models", model_options, help="Start typing to search for a model" ) model_data = data_df[data_df["full_model"] == selected_model].iloc[0] st.sidebar.write("#### 3. Download the label") try: score = int(model_data["score"]) background_path = f"{score}.png" background = Image.open(background_path).convert("RGBA") except FileNotFoundError: st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.") background = Image.open("default_background.png").convert("RGBA") except ValueError: st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.") return final_size = (520, 728) generated_label = create_label_single_pass(background, model_data, final_size) st.image(generated_label, caption="Generated Label Preview", width=520) img_buffer = io.BytesIO() generated_label.save(img_buffer, format="PNG") img_buffer.seek(0) st.sidebar.download_button( label="Download", data=img_buffer, file_name="AIEnergyScore.png", mime="image/png" ) st.sidebar.write("#### 4. Share your label!") st.sidebar.write("[Guidelines](https://huggingface.github.io/AIEnergyScore/#transparency-and-guidelines-for-label-use)") st.sidebar.markdown("
", unsafe_allow_html=True) st.sidebar.write("### Key Links") st.sidebar.markdown( """ """, unsafe_allow_html=True, ) def create_label_single_pass(background_image, model_data, final_size=(520, 728)): bg_resized = background_image.resize(final_size, Image.Resampling.LANCZOS) # If no task is selected (i.e. using default model_data), return the background without drawing any text. if not model_data.get("task"): return bg_resized draw = ImageDraw.Draw(bg_resized) try: title_font = ImageFont.truetype("Inter_24pt-Bold.ttf", size=27) details_font = ImageFont.truetype("Inter_18pt-Regular.ttf", size=23) energy_font = ImageFont.truetype("Inter_18pt-Medium.ttf", size=24) except Exception as e: st.error(f"Font loading failed: {e}") return bg_resized title_x, title_y = 33, 150 details_x, details_y = 480, 256 energy_x = 480 # Right margin for the energy value energy_y = 472 # Capitalize only the first letter of the first word while keeping the rest as is def smart_capitalize(text): """Capitalizes the first letter of a string only if it's not already capitalized.""" if not text: return text # Return unchanged if empty return text if text[0].isupper() else text[0].upper() + text[1:] # Apply smart capitalization provider_text = smart_capitalize(str(model_data['provider'])) model_text = smart_capitalize(str(model_data['model'])) draw.text((title_x, title_y), provider_text, font=title_font, fill="black") draw.text((title_x, title_y + 38), model_text, font=title_font, fill="black") details_lines = [str(model_data['date']), str(model_data['task']), str(model_data['hardware'])] for i, line in enumerate(details_lines): bbox = draw.textbbox((0, 0), line, font=details_font) text_width = bbox[2] - bbox[0] # Get text width draw.text((details_x - text_width, details_y + i * 47), line, font=details_font, fill="black") # Format the energy value to 2 decimal places and right-align the text energy_text = f"{model_data['energy']:.2f}" energy_bbox = draw.textbbox((0, 0), energy_text, font=energy_font) energy_text_width = energy_bbox[2] - energy_bbox[0] draw.text((energy_x - energy_text_width, energy_y), energy_text, font=energy_font, fill="black") return bg_resized if __name__ == "__main__": main()