import streamlit as st
import pandas as pd
from PIL import Image, ImageDraw, ImageFont
import io
def main():
# Inject custom CSS to change the color of selected tasks
st.markdown(
"""
""",
unsafe_allow_html=True,
)
# Sidebar logo and title
with st.sidebar:
col1, col2 = st.columns([1, 5])
with col1:
logo = Image.open("logo.png")
resized_logo = logo.resize((50, 50))
st.image(resized_logo)
with col2:
st.markdown(
"""
AI Energy Score
""",
unsafe_allow_html=True,
)
st.sidebar.markdown("
", unsafe_allow_html=True)
st.sidebar.write("### Generate Label:")
# Define the ordered list of tasks.
task_order = [
"Text Generation",
"Image Generation",
"Text Classification",
"Image Classification",
"Image Captioning",
"Summarization",
"Speech-to-Text (ASR)",
"Object Detection",
"Question Answering",
"Sentence Similarity"
]
# Task selection
st.sidebar.write("#### 1. Select task(s) to view models")
selected_tasks = st.sidebar.multiselect("", options=task_order, default=["Text Generation"])
# Mapping from task to CSV file name.
task_to_file = {
"Text Generation": "text_gen_energyscore.csv",
"Image Generation": "image_generation_energyscore.csv",
"Text Classification": "text_classification_energyscore.csv",
"Image Classification": "image_classification_energyscore.csv",
"Image Captioning": "image_caption_energyscore.csv",
"Summarization": "summarization_energyscore.csv",
"Speech-to-Text (ASR)": "asr_energyscore.csv",
"Object Detection": "object_detection_energyscore.csv",
"Question Answering": "question_answering_energyscore.csv",
"Sentence Similarity": "sentence_similarity_energyscore.csv"
}
st.sidebar.write("#### 2. Select a model to generate label")
default_model_data = {
'provider': "AI Provider",
'model': "Model Name",
'full_model': "AI Provider/Model Name",
'date': "",
'task': "",
'hardware': "",
'energy': "?",
'score': 5
}
if not selected_tasks:
model_data = default_model_data
else:
dfs = []
for task in selected_tasks:
file_name = task_to_file[task]
try:
df = pd.read_csv(file_name)
except FileNotFoundError:
st.sidebar.error(f"Could not find '{file_name}' for task {task}!")
continue
except Exception as e:
st.sidebar.error(f"Error reading '{file_name}' for task {task}: {e}")
continue
df['full_model'] = df['model']
df[['provider', 'model']] = df['model'].str.split(pat='/', n=1, expand=True)
# Multiply raw energy by 1000 to convert to Wh, then round to 2 decimals
df['energy'] = (df['total_gpu_energy'] * 1000).round(2)
df['score'] = df['energy_score'].fillna(1).astype(int)
df['date'] = "February 2025"
df['hardware'] = "NVIDIA H100-80GB"
df['task'] = task
dfs.append(df)
if not dfs:
model_data = default_model_data
else:
data_df = pd.concat(dfs, ignore_index=True)
if data_df.empty:
model_data = default_model_data
else:
model_options = data_df["full_model"].unique().tolist()
selected_model = st.sidebar.selectbox(
"Scored Models",
model_options,
help="Start typing to search for a model"
)
model_data = data_df[data_df["full_model"] == selected_model].iloc[0]
st.sidebar.write("#### 3. Download the label")
try:
score = int(model_data["score"])
background_path = f"{score}.png"
background = Image.open(background_path).convert("RGBA")
except FileNotFoundError:
st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.")
background = Image.open("default_background.png").convert("RGBA")
except ValueError:
st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.")
return
final_size = (520, 728)
generated_label = create_label_single_pass(background, model_data, final_size)
st.image(generated_label, caption="Generated Label Preview", width=520)
img_buffer = io.BytesIO()
generated_label.save(img_buffer, format="PNG")
img_buffer.seek(0)
st.sidebar.download_button(
label="Download",
data=img_buffer,
file_name="AIEnergyScore.png",
mime="image/png"
)
st.sidebar.write("#### 4. Share your label!")
st.sidebar.write("[Guidelines](https://huggingface.github.io/AIEnergyScore/#transparency-and-guidelines-for-label-use)")
st.sidebar.markdown("
", unsafe_allow_html=True)
st.sidebar.write("### Key Links")
st.sidebar.markdown(
"""
""",
unsafe_allow_html=True,
)
def create_label_single_pass(background_image, model_data, final_size=(520, 728)):
bg_resized = background_image.resize(final_size, Image.Resampling.LANCZOS)
# If no task is selected (i.e. using default model_data), return the background without drawing any text.
if not model_data.get("task"):
return bg_resized
draw = ImageDraw.Draw(bg_resized)
try:
title_font = ImageFont.truetype("Inter_24pt-Bold.ttf", size=27)
details_font = ImageFont.truetype("Inter_18pt-Regular.ttf", size=23)
energy_font = ImageFont.truetype("Inter_18pt-Medium.ttf", size=24)
except Exception as e:
st.error(f"Font loading failed: {e}")
return bg_resized
title_x, title_y = 33, 150
details_x, details_y = 480, 256
energy_x = 480 # Right margin for the energy value
energy_y = 472
# Capitalize only the first letter of the first word while keeping the rest as is
def smart_capitalize(text):
"""Capitalizes the first letter of a string only if it's not already capitalized."""
if not text:
return text # Return unchanged if empty
return text if text[0].isupper() else text[0].upper() + text[1:]
# Apply smart capitalization
provider_text = smart_capitalize(str(model_data['provider']))
model_text = smart_capitalize(str(model_data['model']))
draw.text((title_x, title_y), provider_text, font=title_font, fill="black")
draw.text((title_x, title_y + 38), model_text, font=title_font, fill="black")
details_lines = [str(model_data['date']), str(model_data['task']), str(model_data['hardware'])]
for i, line in enumerate(details_lines):
bbox = draw.textbbox((0, 0), line, font=details_font)
text_width = bbox[2] - bbox[0] # Get text width
draw.text((details_x - text_width, details_y + i * 47), line, font=details_font, fill="black")
# Format the energy value to 2 decimal places and right-align the text
energy_text = f"{model_data['energy']:.2f}"
energy_bbox = draw.textbbox((0, 0), energy_text, font=energy_font)
energy_text_width = energy_bbox[2] - energy_bbox[0]
draw.text((energy_x - energy_text_width, energy_y), energy_text, font=energy_font, fill="black")
return bg_resized
if __name__ == "__main__":
main()