Spaces:
Running
Running
File size: 6,613 Bytes
a6350d7 0dd8e7f 1c09022 30d5d12 a6350d7 0eb933f 4e4fe07 a6350d7 0eb933f 5396a98 76edd3a 258b7de 5396a98 fdefe3c 30d5d12 7af8af8 cc3fe5c c71158b 7af8af8 fdefe3c 5396a98 48774fd 5396a98 1c09022 5396a98 afae9bc 5396a98 afae9bc 5396a98 af1220b 5396a98 681b3f6 5396a98 445c657 85edd4e af1220b 5396a98 818e1c4 60635ef 85edd4e 129f916 60635ef cb5ed2b 60635ef 5b72b26 60635ef fdefe3c e4a561f fdefe3c 5396a98 76edd3a b7eaecc 2eaee77 b7eaecc 7b816d7 48774fd 445c657 7b816d7 6b12f0c 7b816d7 4a7bb83 7b816d7 5396a98 0eb933f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import os
import json
from datetime import datetime, timezone
from dataclasses import dataclass
import gradio as gr
from huggingface_hub import HfApi
from huggingface_hub.hf_api import ModelInfo
from enum import Enum
OWNER = "EnergyStarAI"
COMPUTE_SPACE = f"{OWNER}/launch-computation-example"
REQUESTS_DATASET_PATH = f"{OWNER}/requests_debug"
TOKEN = os.environ.get("DEBUG")
API = HfApi(token=TOKEN)
tasks = ['ASR', 'Object Detection', 'Text Classification', 'Image Captioning', 'Question Answering', 'Text Generation', 'Image Classification',
'Sentence Similarity', 'Image Generation', 'Summarization']
##### Data classes need for the leaderboard Submit Model menu. #####
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
float32 = ModelDetails("float32")
bfloat32 = ModelDetails("bfloat32")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["torch.bfloat32", "bfloat32"]:
return Precision.bfloat32
if precision in ["torch.float32", "float32"]:
return Precision.float32
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="π’")
FT = ModelDetails(name="fine-tuned", symbol="πΆ")
IFT = ModelDetails(name="instruction-tuned", symbol="β")
RL = ModelDetails(name="RL-tuned", symbol="π¦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "πΆ" in type:
return ModelType.FT
if "pretrained" in type or "π’" in type:
return ModelType.PT
if "RL-tuned" in type or "π¦" in type:
return ModelType.RL
if "instruction-tuned" in type or "β" in type:
return ModelType.IFT
return ModelType.Unknown
##### End of classes required by the leaderboard Submit Model menu #####
def start_compute_space():
API.restart_space(COMPUTE_SPACE)
return f"Okay! {COMPUTE_SPACE} should be running now!"
def get_model_size(model_info: ModelInfo, precision: str):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
model_size = size_factor * model_size
return model_size
def add_new_eval(
repo_id: str,
precision: str,
task: str,
):
model_owner = repo_id.split("/")[0]
model_name = repo_id.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=repo_id)
except Exception:
print("Could not find information for model %s" % (model))
return
# return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
print("Adding request")
request_dict = {
"model": repo_id,
"precision": precision,
"status": "PENDING",
"submitted_time": current_time,
"task": task.lower().replace(' ','_'),
"likes": model_info.likes,
"params": model_size}
#"license": license,
#"private": False,
#}
out_file = f"{model_name}_eval_request_{precision}.json"
temp_out_path = f"./temp/{REQUESTS_DATASET_PATH}/{model_owner}/"
temp_out_file = f"./temp/{REQUESTS_DATASET_PATH}/{model_owner}/{out_file}"
print("Making directory to output results at %s" % temp_out_path)
os.makedirs(temp_out_path, exist_ok=True)
print("Writing out temp request file to %s" % temp_out_file)
with open(temp_out_file, "w+") as f:
f.write(json.dumps(request_dict))
print("Uploading request to Dataset repo at %s" % REQUESTS_DATASET_PATH)
API.upload_file(
path_or_fileobj=temp_out_file,
path_in_repo=f"{model_owner}/{out_file}",
repo_id=REQUESTS_DATASET_PATH,
repo_type="dataset",
commit_message=f"Adding {model_name} to requests queue.",
)
# Remove the local file
os.remove(temp_out_file)
print("Starting compute space at %s " % COMPUTE_SPACE)
return start_compute_space()
with gr.Blocks() as demo:
gr.Markdown("#Energy Star Submission Portal - v.0 (2024) π π» π")
gr.Markdown("## βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
gr.Markdown("## Fill out below then click **Run Analysis** to create the request file and launch the job.")
gr.Markdown("## The [Project Leaderboard](https://huggingface.co/spaces/EnergyStarAI/2024_Leaderboard) will be updated quarterly, as new models get submitted.")
with gr.Row():
with gr.Column():
task = gr.Dropdown(
choices=tasks,
label="Choose a benchmark task",
multiselect=False,
interactive=True,
)
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
with gr.Row():
with gr.Column():
submit_button = gr.Button("Run Analysis")
submission_result = gr.Markdown()
submit_button.click(
fn=add_new_eval,
inputs=[
model_name_textbox,
precision,
task,
],
outputs=submission_result,
)
demo.launch() |