File size: 7,888 Bytes
7258883
0dd8e7f
1c09022
30d5d12
fd51ff8
6234f75
0eb933f
eddabf1
a6350d7
0eb933f
5396a98
72d2b05
5396a98
e5dba85
5396a98
76edd3a
 
 
f30e264
1267f69
0f89166
 
f27e8b1
 
30d5d12
7af8af8
 
 
 
 
fdefe3c
5396a98
ba40560
5396a98
 
adebb34
5396a98
 
 
 
 
 
 
45d79dc
8fcfb0e
 
a69ed79
0cd6b27
72d2b05
 
0cd6b27
 
 
72d2b05
0cd6b27
 
 
 
45d79dc
5396a98
72d2b05
5396a98
72d2b05
1c09022
72d2b05
efdbdd2
72d2b05
f27e8b1
eddabf1
1414b22
ba40560
022c03e
ba40560
b4fd74a
 
 
 
72d2b05
 
b4fd74a
72d2b05
 
 
 
ba40560
72d2b05
b4fd74a
 
 
 
72d2b05
 
e0c2ce1
 
b4fd74a
 
 
60635ef
b4fd74a
 
 
 
72d2b05
 
b4fd74a
da0da0c
b4fd74a
fdefe3c
5978d25
86ef244
72d2b05
f30e264
72d2b05
4c10601
5978d25
 
 
 
 
 
 
 
 
 
 
72d2b05
f30e264
9f82746
 
 
 
 
bab9ba9
 
4a4c1b5
9f82746
76edd3a
 
92f0c5f
4df1b55
 
 
 
7b816d7
 
48774fd
72d2b05
445c657
72d2b05
7b816d7
 
 
 
7302cb8
7b816d7
 
 
 
 
 
 
 
 
4a7bb83
7b816d7
 
 
d2d483d
45d79dc
72d2b05
a50592b
d5be600
c15ffc9
72d2b05
86ef244
4a4c1b5
72d2b05
4a4c1b5
72d2b05
5978d25
0eb933f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os, glob
import json
from datetime import datetime, timezone
from dataclasses import dataclass
from datasets import load_dataset, Dataset
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi, snapshot_download, ModelInfo, list_models
from enum import Enum


OWNER = "AIEnergyScore"
COMPUTE_SPACE = f"{OWNER}/launch-computation-example"


TOKEN = os.environ.get("DEBUG")
API = HfApi(token=TOKEN)



task_mappings = {'automatic speech recognition':'automatic-speech-recognition', 'Object Detection': 'object-detection', 'Text Classification': 'text-classification', 
                 'Image to Text':'image-to-text', 'Question Answering':'question-answering', 'Text Generation': 'text-generation',
                 'Image Classification':'image-classification', 'Sentence Similarity': 'sentence-similarity',
                 'Image Generation':'image-generation', 'Summarization':'summarization'}
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = "" # emoji

def start_compute_space():
    API.restart_space(COMPUTE_SPACE)  
    gr.Info(f"Okay! {COMPUTE_SPACE} should be running now!")


def get_model_size(model_info: ModelInfo):
    """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
    try:
        model_size = round(model_info.safetensors["total"] / 1e9, 3)
    except (AttributeError, TypeError):
        return 0  # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
    return model_size

def add_docker_eval(zip_file):
    new_fid_list = zip_file.split("/")
    new_fid = new_fid_list[-1]
    if new_fid.endswith('.zip'):
        API.upload_file(
            path_or_fileobj=zip_file,
            repo_id="AIEnergyScore/tested_proprietary_models",
            path_in_repo='submitted_models/'+new_fid,
            repo_type="dataset",
            commit_message="Adding logs via submission Space.",
            token=TOKEN
            )
        gr.Info('Uploaded logs to dataset! We will validate their validity and add them to the next version of the leaderboard.')
    else:
        gr.Info('You can only upload .zip files here!')


def add_new_eval(repo_id: str, task: str):
    model_owner = repo_id.split("/")[0]
    model_name = repo_id.split("/")[1]
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
    requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN)
    requests_dset = requests.to_pandas()
    model_list = requests_dset[requests_dset['status'] == 'COMPLETED']['model'].tolist()
    task_models = list(API.list_models(filter=task_mappings[task]))
    task_model_names = [m.id for m in task_models]
    if repo_id in model_list:
        gr.Info('This model has already been run!')
    elif repo_id not in task_model_names:
        gr.Info("This model isn't compatible with the chosen task! Pick a different model-task combination")
    else:
        # Is the model info correctly filled?
        try:
            model_info = API.model_info(repo_id=repo_id)
            model_size = get_model_size(model_info=model_info)
            likes = model_info.likes
        except Exception:
            gr.Info("Could not find information for model %s" % (model_name))
            model_size = None
            likes = None

        gr.Info("Adding request")

        request_dict = {
            "model": repo_id,
            "status": "PENDING",
            "submitted_time": pd.to_datetime(current_time),
            "task": task_mappings[task],
            "likes": likes,
            "params": model_size,
            "leaderboard_version": "v0",}
            #"license": license,
            #"private": False,
        #}
    
        print("Writing out request file to dataset")
        df_request_dict = pd.DataFrame([request_dict])
        print(df_request_dict)
        df_final = pd.concat([requests_dset, df_request_dict], ignore_index=True)
        updated_dset = Dataset.from_pandas(df_final)
        updated_dset.push_to_hub("AIEnergyScore/requests_debug", split="test", token=TOKEN)
        
        gr.Info("Starting compute space at %s " % COMPUTE_SPACE)
        return start_compute_space()

    
def print_existing_models():
    requests= load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN)
    requests_dset = requests.to_pandas()
    model_df= requests_dset[['model', 'status']]
    model_df = model_df[model_df['status'] == 'COMPLETED']
    return model_df

def highlight_cols(x): 
    df = x.copy() 
    df[df['status'] == 'COMPLETED'] = 'color: green'
    df[df['status'] == 'PENDING'] = 'color: orange'
    df[df['status'] == 'FAILED'] = 'color: red'
    return df 

# Applying the style function
existing_models = print_existing_models()
formatted_df = existing_models.style.apply(highlight_cols, axis=None)

def get_leaderboard_models():
    path = r'leaderboard_v0_data/energy'
    filenames = glob.glob(path + "/*.csv")
    data = []
    for filename in filenames:
        data.append(pd.read_csv(filename))
    leaderboard_data = pd.concat(data, ignore_index=True)
    return leaderboard_data[['model','task']]


with gr.Blocks() as demo:
    gr.Markdown("# Energy Score Submission Portal - v.0 (Fall 2024) 🌎 πŸ’» 🌟")
    gr.Markdown("### The goal of the AI Energy Score project is to develop an energy-based rating system for AI model deployment that will guide members of the community in choosing models for different tasks based on energy efficiency.", elem_classes="markdown-text")   
    gr.Markdown("### If you want us to evaluate a model hosted on the πŸ€— Hub, enter the model ID and choose the corresponding task from the dropdown list below, then click **Run Analysis** to launch the benchmarking process.")
    gr.Markdown("### If you've used the [Docker file](https://github.com/huggingface/EnergyStarAI/) that we created to run your own evaluation, please submit the resulting log files at the bottom of the page.")
    gr.Markdown("### The [Project Leaderboard](https://huggingface.co/spaces/EnergyStarAI/2024_Leaderboard) will be updated quarterly, as new models get submitted.")
    with gr.Row():
        with gr.Column():
            task = gr.Dropdown(
                choices=list(task_mappings.keys()),
                label="Choose a benchmark task",
                value='Text Generation',
                multiselect=False,
                interactive=True,
            )
        with gr.Column():
            model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")

    with gr.Row():
        with gr.Column():
            submit_button = gr.Button("Run Analysis")
            submission_result = gr.Markdown()
            submit_button.click(
                fn=add_new_eval,
                inputs=[
                    model_name_textbox,
                    task,
                ],
                outputs=submission_result,
            )
    with gr.Row():
        with gr.Column():
            with gr.Accordion("Submit log files from a Docker run:", open=False):
                gr.Markdown("If you've already benchmarked your model using the [Docker file](https://github.com/huggingface/EnergyStarAI/) provided, please upload the **entire run log directory** (in .zip format) below:")
                file_output = gr.File(visible=False)
                u = gr.UploadButton("Upload a zip file with logs", file_count="single")
                u.upload(add_docker_eval, u, file_output)
    with gr.Row():
        with gr.Column():
                with gr.Accordion("Models that are in the latest leaderboard version:", open=False):
                    gr.Dataframe(get_leaderboard_models())
                with gr.Accordion("Models that have been benchmarked recently:", open=False):
                    gr.Dataframe(formatted_df)
demo.launch()