Spaces:
Running
Running
File size: 7,888 Bytes
7258883 0dd8e7f 1c09022 30d5d12 fd51ff8 6234f75 0eb933f eddabf1 a6350d7 0eb933f 5396a98 72d2b05 5396a98 e5dba85 5396a98 76edd3a f30e264 1267f69 0f89166 f27e8b1 30d5d12 7af8af8 fdefe3c 5396a98 ba40560 5396a98 adebb34 5396a98 45d79dc 8fcfb0e a69ed79 0cd6b27 72d2b05 0cd6b27 72d2b05 0cd6b27 45d79dc 5396a98 72d2b05 5396a98 72d2b05 1c09022 72d2b05 efdbdd2 72d2b05 f27e8b1 eddabf1 1414b22 ba40560 022c03e ba40560 b4fd74a 72d2b05 b4fd74a 72d2b05 ba40560 72d2b05 b4fd74a 72d2b05 e0c2ce1 b4fd74a 60635ef b4fd74a 72d2b05 b4fd74a da0da0c b4fd74a fdefe3c 5978d25 86ef244 72d2b05 f30e264 72d2b05 4c10601 5978d25 72d2b05 f30e264 9f82746 bab9ba9 4a4c1b5 9f82746 76edd3a 92f0c5f 4df1b55 7b816d7 48774fd 72d2b05 445c657 72d2b05 7b816d7 7302cb8 7b816d7 4a7bb83 7b816d7 d2d483d 45d79dc 72d2b05 a50592b d5be600 c15ffc9 72d2b05 86ef244 4a4c1b5 72d2b05 4a4c1b5 72d2b05 5978d25 0eb933f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os, glob
import json
from datetime import datetime, timezone
from dataclasses import dataclass
from datasets import load_dataset, Dataset
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi, snapshot_download, ModelInfo, list_models
from enum import Enum
OWNER = "AIEnergyScore"
COMPUTE_SPACE = f"{OWNER}/launch-computation-example"
TOKEN = os.environ.get("DEBUG")
API = HfApi(token=TOKEN)
task_mappings = {'automatic speech recognition':'automatic-speech-recognition', 'Object Detection': 'object-detection', 'Text Classification': 'text-classification',
'Image to Text':'image-to-text', 'Question Answering':'question-answering', 'Text Generation': 'text-generation',
'Image Classification':'image-classification', 'Sentence Similarity': 'sentence-similarity',
'Image Generation':'image-generation', 'Summarization':'summarization'}
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
def start_compute_space():
API.restart_space(COMPUTE_SPACE)
gr.Info(f"Okay! {COMPUTE_SPACE} should be running now!")
def get_model_size(model_info: ModelInfo):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
return model_size
def add_docker_eval(zip_file):
new_fid_list = zip_file.split("/")
new_fid = new_fid_list[-1]
if new_fid.endswith('.zip'):
API.upload_file(
path_or_fileobj=zip_file,
repo_id="AIEnergyScore/tested_proprietary_models",
path_in_repo='submitted_models/'+new_fid,
repo_type="dataset",
commit_message="Adding logs via submission Space.",
token=TOKEN
)
gr.Info('Uploaded logs to dataset! We will validate their validity and add them to the next version of the leaderboard.')
else:
gr.Info('You can only upload .zip files here!')
def add_new_eval(repo_id: str, task: str):
model_owner = repo_id.split("/")[0]
model_name = repo_id.split("/")[1]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN)
requests_dset = requests.to_pandas()
model_list = requests_dset[requests_dset['status'] == 'COMPLETED']['model'].tolist()
task_models = list(API.list_models(filter=task_mappings[task]))
task_model_names = [m.id for m in task_models]
if repo_id in model_list:
gr.Info('This model has already been run!')
elif repo_id not in task_model_names:
gr.Info("This model isn't compatible with the chosen task! Pick a different model-task combination")
else:
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=repo_id)
model_size = get_model_size(model_info=model_info)
likes = model_info.likes
except Exception:
gr.Info("Could not find information for model %s" % (model_name))
model_size = None
likes = None
gr.Info("Adding request")
request_dict = {
"model": repo_id,
"status": "PENDING",
"submitted_time": pd.to_datetime(current_time),
"task": task_mappings[task],
"likes": likes,
"params": model_size,
"leaderboard_version": "v0",}
#"license": license,
#"private": False,
#}
print("Writing out request file to dataset")
df_request_dict = pd.DataFrame([request_dict])
print(df_request_dict)
df_final = pd.concat([requests_dset, df_request_dict], ignore_index=True)
updated_dset = Dataset.from_pandas(df_final)
updated_dset.push_to_hub("AIEnergyScore/requests_debug", split="test", token=TOKEN)
gr.Info("Starting compute space at %s " % COMPUTE_SPACE)
return start_compute_space()
def print_existing_models():
requests= load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN)
requests_dset = requests.to_pandas()
model_df= requests_dset[['model', 'status']]
model_df = model_df[model_df['status'] == 'COMPLETED']
return model_df
def highlight_cols(x):
df = x.copy()
df[df['status'] == 'COMPLETED'] = 'color: green'
df[df['status'] == 'PENDING'] = 'color: orange'
df[df['status'] == 'FAILED'] = 'color: red'
return df
# Applying the style function
existing_models = print_existing_models()
formatted_df = existing_models.style.apply(highlight_cols, axis=None)
def get_leaderboard_models():
path = r'leaderboard_v0_data/energy'
filenames = glob.glob(path + "/*.csv")
data = []
for filename in filenames:
data.append(pd.read_csv(filename))
leaderboard_data = pd.concat(data, ignore_index=True)
return leaderboard_data[['model','task']]
with gr.Blocks() as demo:
gr.Markdown("# Energy Score Submission Portal - v.0 (Fall 2024) π π» π")
gr.Markdown("### The goal of the AI Energy Score project is to develop an energy-based rating system for AI model deployment that will guide members of the community in choosing models for different tasks based on energy efficiency.", elem_classes="markdown-text")
gr.Markdown("### If you want us to evaluate a model hosted on the π€ Hub, enter the model ID and choose the corresponding task from the dropdown list below, then click **Run Analysis** to launch the benchmarking process.")
gr.Markdown("### If you've used the [Docker file](https://github.com/huggingface/EnergyStarAI/) that we created to run your own evaluation, please submit the resulting log files at the bottom of the page.")
gr.Markdown("### The [Project Leaderboard](https://huggingface.co/spaces/EnergyStarAI/2024_Leaderboard) will be updated quarterly, as new models get submitted.")
with gr.Row():
with gr.Column():
task = gr.Dropdown(
choices=list(task_mappings.keys()),
label="Choose a benchmark task",
value='Text Generation',
multiselect=False,
interactive=True,
)
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
with gr.Row():
with gr.Column():
submit_button = gr.Button("Run Analysis")
submission_result = gr.Markdown()
submit_button.click(
fn=add_new_eval,
inputs=[
model_name_textbox,
task,
],
outputs=submission_result,
)
with gr.Row():
with gr.Column():
with gr.Accordion("Submit log files from a Docker run:", open=False):
gr.Markdown("If you've already benchmarked your model using the [Docker file](https://github.com/huggingface/EnergyStarAI/) provided, please upload the **entire run log directory** (in .zip format) below:")
file_output = gr.File(visible=False)
u = gr.UploadButton("Upload a zip file with logs", file_count="single")
u.upload(add_docker_eval, u, file_output)
with gr.Row():
with gr.Column():
with gr.Accordion("Models that are in the latest leaderboard version:", open=False):
gr.Dataframe(get_leaderboard_models())
with gr.Accordion("Models that have been benchmarked recently:", open=False):
gr.Dataframe(formatted_df)
demo.launch() |