Spaces:
Running
Running
File size: 6,558 Bytes
7258883 0dd8e7f 1c09022 30d5d12 fd51ff8 6234f75 0eb933f eddabf1 a6350d7 0eb933f 5396a98 e5dba85 5396a98 76edd3a f30e264 1267f69 0f89166 f27e8b1 5396a98 30d5d12 7af8af8 fdefe3c 5396a98 adebb34 5396a98 45d79dc 22e0f50 45d79dc 5396a98 48774fd 5396a98 adebb34 6fddb6d 1c09022 efdbdd2 db0181e f27e8b1 eddabf1 1414b22 3558487 022c03e eddabf1 b4fd74a 3558487 eddabf1 b4fd74a e5dba85 b4fd74a e0c2ce1 b4fd74a 60635ef b4fd74a fdefe3c 86ef244 f30e264 4a4c1b5 f30e264 9f82746 bab9ba9 4a4c1b5 9f82746 76edd3a b0ba007 b7eaecc 2eaee77 b7eaecc 7b816d7 48774fd f27e8b1 445c657 adebb34 7b816d7 7302cb8 7b816d7 4a7bb83 7b816d7 d2d483d 45d79dc 93e2e33 a50592b c15ffc9 86ef244 4a4c1b5 efdbdd2 0eb933f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import os, glob
import json
from datetime import datetime, timezone
from dataclasses import dataclass
from datasets import load_dataset, Dataset
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi, snapshot_download, ModelInfo, list_models
from enum import Enum
OWNER = "EnergyStarAI"
COMPUTE_SPACE = f"{OWNER}/launch-computation-example"
TOKEN = os.environ.get("DEBUG")
API = HfApi(token=TOKEN)
task_mappings = {'automatic speech recognition':'automatic-speech-recognition', 'Object Detection': 'object-detection', 'Text Classification': 'text-classification',
'Image to Text':'image-to-text', 'Question Answering':'question-answering', 'Text Generation': 'text-generation',
'Image Classification':'image-classification', 'Sentence Similarity': 'sentence-similarity',
'Image Generation':'image-generation', 'Summarization':'summarization'}
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
def start_compute_space():
API.restart_space(COMPUTE_SPACE)
return f"Okay! {COMPUTE_SPACE} should be running now!"
def get_model_size(model_info: ModelInfo):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
return model_size
def add_docker_eval(zip_file):
API.upload_file(
path_or_fileobj= zip_file,
repo_id="EnergyStarAI/tested_proprietary_models",
path_in_repo=zip_file,
repo_type="dataset",
commit_message="Adding logs via submission Space.",
token= TOKEN
)
def add_new_eval(
repo_id: str,
task: str,
):
model_owner = repo_id.split("/")[0]
model_name = repo_id.split("/")[1]
model_list=[]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
requests= load_dataset("EnergyStarAI/requests_debug", split="test", token=TOKEN)
requests_dset = requests.to_pandas()
model_list= requests_dset[requests_dset['status'] == 'COMPLETED']['model'].tolist()
task_models = list(API.list_models(filter=task_mappings[task]))
task_model_names = [m.id for m in task_models]
if repo_id in model_list:
return 'This model has already been run!'
elif repo_id not in task_model_names:
return "This model isn't compatible with the chosen task! Pick a different model-task combination"
else:
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=repo_id)
except Exception:
return "Could not find information for model %s" % (model)
model_size = get_model_size(model_info=model_info)
print("Adding request")
request_dict = {
"model": repo_id,
"status": "PENDING",
"submitted_time": pd.to_datetime(current_time),
"task": task,
"likes": model_info.likes,
"params": model_size,
"leaderboard_version": "v0",}
#"license": license,
#"private": False,
#}
print("Writing out request file to dataset")
df_request_dict = pd.DataFrame([request_dict])
print(df_request_dict)
df_final = pd.concat([requests_dset, df_request_dict], ignore_index=True)
updated_dset =Dataset.from_pandas(df_final)
updated_dset.push_to_hub("EnergyStarAI/requests_debug", split="test", token=TOKEN)
print("Starting compute space at %s " % COMPUTE_SPACE)
return start_compute_space()
def print_existing_models():
requests= load_dataset("EnergyStarAI/requests_debug", split="test", token=TOKEN)
requests_dset = requests.to_pandas()
model_list= requests_dset[requests_dset['status'] == 'COMPLETED']
return model_list[['model','task']]
def get_leaderboard_models():
path = r'leaderboard_v0_data/energy'
filenames = glob.glob(path + "/*.csv")
data = []
for filename in filenames:
data.append(pd.read_csv(filename))
leaderboard_data = pd.concat(data, ignore_index=True)
return leaderboard_data[['model','task']]
with gr.Blocks() as demo:
gr.Markdown("# Energy Star Submission Portal - v.0 (2024) π π» π")
gr.Markdown("## βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
gr.Markdown("## Fill out below then click **Run Analysis** to create the request file and launch the job.")
gr.Markdown("## The [Project Leaderboard](https://huggingface.co/spaces/EnergyStarAI/2024_Leaderboard) will be updated quarterly, as new models get submitted.")
with gr.Row():
with gr.Column():
task = gr.Dropdown(
choices=task_mappings.keys(),
label="Choose a benchmark task",
value = 'Text Generation',
multiselect=False,
interactive=True,
)
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
with gr.Row():
with gr.Column():
submit_button = gr.Button("Run Analysis")
submission_result = gr.Markdown()
submit_button.click(
fn=add_new_eval,
inputs=[
model_name_textbox,
task,
],
outputs=submission_result,
)
with gr.Row():
with gr.Column():
with gr.Accordion("Submit log files from a Docker run:", open = False):
gr.Markdown("If you've already benchmarked your model using the [Docker file](https://github.com/huggingface/EnergyStarAI/) provided, please upload the **entire run log directory** (in .zip format) below:")
u = gr.UploadButton("Upload a zip file with logs", file_count="single")
u.upload(add_docker_eval,u, file_output)
with gr.Row():
with gr.Column():
with gr.Accordion("Models that are in the latest leaderboard version:", open = False):
gr.Dataframe(get_leaderboard_models())
with gr.Accordion("Models that have been benchmarked lately:", open = False):
gr.Dataframe(print_existing_models())
demo.launch() |