Spaces:
Running
Running
File size: 8,041 Bytes
a6350d7 0dd8e7f 1c09022 30d5d12 a6350d7 0eb933f 4e4fe07 a6350d7 0eb933f 5396a98 76edd3a 5396a98 fdefe3c 30d5d12 7af8af8 cc3fe5c c71158b 7af8af8 fdefe3c 5396a98 690be38 5396a98 690be38 5396a98 1c09022 5396a98 af1220b 5396a98 af1220b 5396a98 fdefe3c 5396a98 76edd3a 7b816d7 76edd3a 475e252 7b816d7 3eff3b0 7b816d7 5396a98 0eb933f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import os
import json
from datetime import datetime, timezone
from dataclasses import dataclass
import gradio as gr
from huggingface_hub import HfApi
from huggingface_hub.hf_api import ModelInfo
from enum import Enum
OWNER = "EnergyStarAI"
COMPUTE_SPACE = f"{OWNER}/launch-computation-example"
REQUESTS_DATASET_PATH = f"{OWNER}/requests_debug"
TOKEN = os.environ.get("DEBUG")
API = HfApi(token=TOKEN)
##### Data classes need for the leaderboard Submit Model menu. #####
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
float32 = ModelDetails("float32")
bfloat32 = ModelDetails("bfloat32")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["torch.bfloat32", "bfloat32"]:
return Precision.bfloat32
if precision in ["torch.float32", "float32"]:
return Precision.float32
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="π’")
FT = ModelDetails(name="fine-tuned", symbol="πΆ")
IFT = ModelDetails(name="instruction-tuned", symbol="β")
RL = ModelDetails(name="RL-tuned", symbol="π¦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "πΆ" in type:
return ModelType.FT
if "pretrained" in type or "π’" in type:
return ModelType.PT
if "RL-tuned" in type or "π¦" in type:
return ModelType.RL
if "instruction-tuned" in type or "β" in type:
return ModelType.IFT
return ModelType.Unknown
##### End of classes required by the leaderboard Submit Model menu #####
def start_compute_space():
API.restart_space(COMPUTE_SPACE)
return f"Okay! {COMPUTE_SPACE} should be running now!"
def get_model_size(model_info: ModelInfo, precision: str):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
model_size = size_factor * model_size
return model_size
def add_new_eval(
repo_id: str,
revision: str,
precision: str,
weight_type: str,
model_type: str,
):
model_owner = repo_id.split("/")[0]
model_name = repo_id.split("/")[1]
precision = precision.split(" ")[0]
out_dir = f"{REQUESTS_DATASET_PATH}/{model_owner}"
print("Making Dataset directory to output results at %s" % out_dir)
os.makedirs(out_dir, exist_ok=True)
out_path = f"{REQUESTS_DATASET_PATH}/{model_owner}/{model_name}_eval_request_{precision}_{weight_type}.json"
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
#if model_type is None or model_type == "":
# return styled_error("Please select a model type.")
# Does the model actually exist?
#if revision == "":
revision = "main"
# Is the model on the hub?
#if weight_type in ["Delta", "Adapter"]:
# base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
# if not base_model_on_hub:
# return styled_error(f'Base model "{base_model}" {error}')
#if not weight_type == "Adapter":
# model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
# if not model_on_hub:
# return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=repo_id, revision=revision)
except Exception:
print("Could not find information for model %s at revision %s" % (model, revision))
return
# return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
#try:
# license = model_info.cardData["license"]
#except Exception:
# return styled_error("Please select a license for your model")
#modelcard_OK, error_msg = check_model_card(model)
#if not modelcard_OK:
# return styled_error(error_msg)
# Seems good, creating the eval
print("Adding request")
request_dict = {
"model": repo_id,
"base_model": base_model,
"revision": revision,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size}
#"license": license,
#"private": False,
#}
# Check for duplicate submission
#if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
# return styled_warning("This model has been already submitted.")
print("Writing out request file to %s" % out_path)
with open(out_path, "w") as f:
f.write(json.dumps(request_dict))
print("Starting compute space at %s " % COMPUTE_SPACE)
start_compute_space()
with gr.Blocks() as demo:
gr.Markdown("# This is a super basic example 'frontend'. Fill out below then click **Run** to create the request file and launch the job.")
gr.Markdown("## The request file will be written so %s." % REQUESTS_DATASET_PATH)
gr.Markdown("## The job will be launched at [EnergyStarAI/launch-computation-example](https://huggingface.co/spaces/EnergyStarAI/launch-computation-example).")
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name", placeholder="lvwerra/distilbert-imdb")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=ModelType.PT.to_str(" : "),
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
with gr.Row():
with gr.Column():
submit_button = gr.Button("Run Analysis")
submission_result = gr.Markdown()
submit_button.click(
fn=add_new_eval,
inputs=[
model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
outputs=submission_result,
)
demo.launch() |