meg's picture
meg HF Staff
Formatting, importing json.
0dd8e7f verified
raw
history blame
8.2 kB
import os
import json
from datetime import datetime, timezone
from dataclasses import dataclass
import gradio as gr
from huggingface_hub import HfApi
from huggingface_hub.hf_api import ModelInfo
from enum import Enum
OWNER = "EnergyStarAI"
COMPUTE_SPACE = f"{OWNER}/launch-computation-example"
REQUESTS_DATASET_PATH = f"{OWNER}/requests_debug"
TOKEN = os.environ.get("DEBUG")
API = HfApi(token=TOKEN)
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
float32 = ModelDetails("float32")
bfloat32 = ModelDetails("bfloat32")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["torch.bfloat32", "bfloat32"]:
return Precision.bfloat32
if precision in ["torch.float32", "float32"]:
return Precision.float32
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟒")
FT = ModelDetails(name="fine-tuned", symbol="πŸ”Ά")
IFT = ModelDetails(name="instruction-tuned", symbol="β­•")
RL = ModelDetails(name="RL-tuned", symbol="🟦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "πŸ”Ά" in type:
return ModelType.FT
if "pretrained" in type or "🟒" in type:
return ModelType.PT
if "RL-tuned" in type or "🟦" in type:
return ModelType.RL
if "instruction-tuned" in type or "β­•" in type:
return ModelType.IFT
return ModelType.Unknown
def update(name):
API.restart_space(COMPUTE_SPACE)
return f"Okay! {COMPUTE_SPACE} should be running now!"
def get_model_size(model_info: ModelInfo, precision: str):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
model_size = size_factor * model_size
return model_size
def add_new_eval(
repo_id: str,
base_model: str,
revision: str,
precision: str,
weight_type: str,
model_type: str,
):
model_owner = repo_id.split("/")[0]
model_name = repo_id.split("/")[1]
precision = precision.split(" ")[0]
out_dir = f"{REQUESTS_DATASET_PATH}/{model_owner}"
print("Making Dataset directory to output results at %s" % out_dir)
os.makedirs(out_dir, exist_ok=True)
out_path = f"{REQUESTS_DATASET_PATH}/{model_owner}/{model_name}_eval_request_{precision}_{weight_type}.json"
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
#if model_type is None or model_type == "":
# return styled_error("Please select a model type.")
# Does the model actually exist?
#if revision == "":
revision = "main"
# Is the model on the hub?
#if weight_type in ["Delta", "Adapter"]:
# base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
# if not base_model_on_hub:
# return styled_error(f'Base model "{base_model}" {error}')
#if not weight_type == "Adapter":
# model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
# if not model_on_hub:
# return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=repo_id, revision=revision)
except Exception:
print("Could not find information for model %s at revision %s" % (model, revision))
return
# return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
#try:
# license = model_info.cardData["license"]
#except Exception:
# return styled_error("Please select a license for your model")
#modelcard_OK, error_msg = check_model_card(model)
#if not modelcard_OK:
# return styled_error(error_msg)
# Seems good, creating the eval
print("Adding request")
request_entry = {
"model": repo_id,
"base_model": base_model,
"revision": revision,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_info.likes,
"params": model_size}
#"license": license,
#"private": False,
#}
# Check for duplicate submission
#if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
# return styled_warning("This model has been already submitted.")
print("Writing out request file to %s" % out_path)
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
with gr.Blocks() as demo:
gr.Markdown("This is a super basic example 'frontend'. Fill out below then click **Run** to create the request file and launch the job.")
gr.Markdown("The request file will be written so %s." % REQUESTS_DATASET_PATH)
gr.Markdown("The job will be launched at [EnergyStarAI/launch-computation-example](https://huggingface.co/spaces/EnergyStarAI/launch-computation-example).")
with gr.Row():
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
with gr.Row():
submit_button = gr.Button("Run Analysis")
submission_result = gr.Markdown()
submit_button.click(
fn=add_new_eval,
inputs=[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
outputs=submission_result,
)
demo.launch()