sasha's picture
sasha HF Staff
Update app.py
95f6f15 verified
raw
history blame
7.35 kB
import os
import json
from datetime import datetime, timezone
from dataclasses import dataclass
import gradio as gr
from huggingface_hub import HfApi, snapshot_download
from huggingface_hub.hf_api import ModelInfo
from enum import Enum
OWNER = "EnergyStarAI"
COMPUTE_SPACE = f"{OWNER}/launch-computation-example"
REQUESTS_DATASET_PATH = f"{OWNER}/requests_debug"
TOKEN = os.environ.get("DEBUG")
API = HfApi(token=TOKEN)
tasks = ['ASR', 'Object Detection', 'Text Classification', 'Image Captioning', 'Question Answering', 'Text Generation', 'Image Classification',
'Sentence Similarity', 'Image Generation', 'Summarization']
##### Data classes need for the leaderboard Submit Model menu. #####
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
float32 = ModelDetails("float32")
bfloat32 = ModelDetails("bfloat32")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["torch.bfloat32", "bfloat32"]:
return Precision.bfloat32
if precision in ["torch.float32", "float32"]:
return Precision.float32
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟒")
FT = ModelDetails(name="fine-tuned", symbol="πŸ”Ά")
IFT = ModelDetails(name="instruction-tuned", symbol="β­•")
RL = ModelDetails(name="RL-tuned", symbol="🟦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "πŸ”Ά" in type:
return ModelType.FT
if "pretrained" in type or "🟒" in type:
return ModelType.PT
if "RL-tuned" in type or "🟦" in type:
return ModelType.RL
if "instruction-tuned" in type or "β­•" in type:
return ModelType.IFT
return ModelType.Unknown
##### End of classes required by the leaderboard Submit Model menu #####
def start_compute_space():
API.restart_space(COMPUTE_SPACE)
return f"Okay! {COMPUTE_SPACE} should be running now!"
def get_model_size(model_info: ModelInfo, precision: str):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
model_size = size_factor * model_size
return model_size
def add_new_eval(
repo_id: str,
precision: str,
task: str,
):
model_owner = repo_id.split("/")[0]
model_name = repo_id.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=repo_id)
except Exception:
print("Could not find information for model %s" % (model))
return
# return styled_error("Could not get your model information. Please fill it up properly.")
model_size = get_model_size(model_info=model_info, precision=precision)
print("Adding request")
request_dict = {
"model": repo_id,
"precision": precision,
"status": "PENDING",
"submitted_time": current_time,
"task": task,
"likes": model_info.likes,
"params": model_size}
#"license": license,
#"private": False,
#}
out_file = f"{model_name}_eval_request_{precision}.json"
temp_out_path = f"./temp/{REQUESTS_DATASET_PATH}/{model_owner}/"
temp_out_file = f"./temp/{REQUESTS_DATASET_PATH}/{model_owner}/{out_file}"
print("Making directory to output results at %s" % temp_out_path)
os.makedirs(temp_out_path, exist_ok=True)
print("Writing out temp request file to %s" % temp_out_file)
with open(temp_out_file, "w+") as f:
f.write(json.dumps(request_dict))
print("Uploading request to Dataset repo at %s" % REQUESTS_DATASET_PATH)
API.upload_file(
path_or_fileobj=temp_out_file,
path_in_repo=f"{model_owner}/{out_file}",
repo_id=REQUESTS_DATASET_PATH,
repo_type="dataset",
commit_message=f"Adding {model_name} to requests queue.",
)
# Remove the local file
os.remove(temp_out_file)
print("Starting compute space at %s " % COMPUTE_SPACE)
return start_compute_space()
def print_existing_models():
model_dict= []
requests_dataset = snapshot_download('EnergyStarAI/requests_debug', token=TOKEN, repo_type="dataset", allow_patterns="*.json")
for dir, path, files in os.walk(requests_dataset):
for fid in files:
file_path = os.path.join(dir, fid)
with open(file_path) as fp:
request = json.load(fp)
status = request['status']
if status == 'COMPLETE':
status = request['status']
model = request['model']
task = request['task']
model_dict.append([model, task])
return model_dict
with gr.Blocks() as demo:
gr.Markdown("#Energy Star Submission Portal - v.0 (2024) 🌎 πŸ’» 🌟")
gr.Markdown("## βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
gr.Markdown("## Fill out below then click **Run Analysis** to create the request file and launch the job.")
gr.Markdown("## The [Project Leaderboard](https://huggingface.co/spaces/EnergyStarAI/2024_Leaderboard) will be updated quarterly, as new models get submitted.")
with gr.Row():
with gr.Column():
task = gr.Dropdown(
choices=tasks,
label="Choose a benchmark task",
multiselect=False,
interactive=True,
)
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
with gr.Row():
with gr.Column():
submit_button = gr.Button("Run Analysis")
submission_result = gr.Markdown()
submit_button.click(
fn=add_new_eval,
inputs=[
model_name_textbox,
precision,
task,
],
outputs=submission_result,
)
with gr.Row():
gr.Dataframe(print_existing_models())
demo.launch()