Spaces:
Runtime error
Runtime error
File size: 2,145 Bytes
663b5a6 bda502f 663b5a6 bda502f 663b5a6 bda502f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
title: Prometh-MOEM-V.01 Model Demo
emoji: π
colorFrom: red
colorTo: pink
sdk: gradio
pinned: false
license: apache-2.0
language:
- en
---
# Prometh-MOEM-V.01 Model Card π
**Prometh-MOEM-V.01** is a pioneering Mixture of Experts (MoE) model, blending the capabilities of multiple foundational models to enhance performance across a variety of tasks. This model leverages the collective strengths of its components, achieving unparalleled accuracy, speed, and versatility.
## π Model Sources and Components
This MoE model amalgamates specialized models including:
- [Wtzwho/Prometh-merge-test2](https://huggingface.co/Wtzwho/Prometh-merge-test2)
- [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
- [Wtzwho/Prometh-merge-test3](https://huggingface.co/Wtzwho/Prometh-merge-test3)
- [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B)
## π Key Features
- **Enhanced Performance**: Tailored for peak accuracy and efficiency.
- **Versatility**: Exceptionally adaptable across a wide range of NLP tasks.
- **State-of-the-Art Integration**: Incorporates the latest in AI research for effective model integration.
## π Application Areas
Prometh-MOEM-V.01 excels in:
- Text generation
- Sentiment analysis
- Language translation
- Question answering
## π» Usage Instructions
To utilize Prometh-MOEM-V.01 in your projects:
```python
pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer, pipeline
import torch
model = "Wtzwho/Prometh-MOEM-V.01"
tokenizer = AutoTokenizer.from_pretrained(model)
# Setup pipeline
pipeline = pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
# Example query
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
|