Wtzwho commited on
Commit
c094b20
Β·
verified Β·
1 Parent(s): bda502f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -54
README.md CHANGED
@@ -10,57 +10,3 @@ language:
10
  - en
11
  ---
12
 
13
- # Prometh-MOEM-V.01 Model Card πŸ‘
14
-
15
- **Prometh-MOEM-V.01** is a pioneering Mixture of Experts (MoE) model, blending the capabilities of multiple foundational models to enhance performance across a variety of tasks. This model leverages the collective strengths of its components, achieving unparalleled accuracy, speed, and versatility.
16
-
17
- ## πŸš€ Model Sources and Components
18
-
19
- This MoE model amalgamates specialized models including:
20
-
21
- - [Wtzwho/Prometh-merge-test2](https://huggingface.co/Wtzwho/Prometh-merge-test2)
22
- - [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
23
- - [Wtzwho/Prometh-merge-test3](https://huggingface.co/Wtzwho/Prometh-merge-test3)
24
- - [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B)
25
-
26
- ## 🌟 Key Features
27
-
28
- - **Enhanced Performance**: Tailored for peak accuracy and efficiency.
29
- - **Versatility**: Exceptionally adaptable across a wide range of NLP tasks.
30
- - **State-of-the-Art Integration**: Incorporates the latest in AI research for effective model integration.
31
-
32
- ## πŸ“ˆ Application Areas
33
-
34
- Prometh-MOEM-V.01 excels in:
35
-
36
- - Text generation
37
- - Sentiment analysis
38
- - Language translation
39
- - Question answering
40
-
41
- ## πŸ’» Usage Instructions
42
-
43
- To utilize Prometh-MOEM-V.01 in your projects:
44
-
45
- ```python
46
- pip install -qU transformers bitsandbytes accelerate
47
-
48
- from transformers import AutoTokenizer, pipeline
49
- import torch
50
-
51
- model = "Wtzwho/Prometh-MOEM-V.01"
52
- tokenizer = AutoTokenizer.from_pretrained(model)
53
-
54
- # Setup pipeline
55
- pipeline = pipeline(
56
- "text-generation",
57
- model=model,
58
- model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
59
- )
60
-
61
- # Example query
62
- messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
63
- prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
64
-
65
- outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
66
- print(outputs[0]["generated_text"])
 
10
  - en
11
  ---
12