--- title: Prometh-MOEM-V.01 Model Demo emoji: 👁 colorFrom: red colorTo: pink sdk: gradio pinned: false license: apache-2.0 language: - en --- # Prometh-MOEM-V.01 Model Card 👁 **Prometh-MOEM-V.01** is a pioneering Mixture of Experts (MoE) model, blending the capabilities of multiple foundational models to enhance performance across a variety of tasks. This model leverages the collective strengths of its components, achieving unparalleled accuracy, speed, and versatility. ## 🚀 Model Sources and Components This MoE model amalgamates specialized models including: - [Wtzwho/Prometh-merge-test2](https://huggingface.co/Wtzwho/Prometh-merge-test2) - [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) - [Wtzwho/Prometh-merge-test3](https://huggingface.co/Wtzwho/Prometh-merge-test3) - [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) ## 🌟 Key Features - **Enhanced Performance**: Tailored for peak accuracy and efficiency. - **Versatility**: Exceptionally adaptable across a wide range of NLP tasks. - **State-of-the-Art Integration**: Incorporates the latest in AI research for effective model integration. ## 📈 Application Areas Prometh-MOEM-V.01 excels in: - Text generation - Sentiment analysis - Language translation - Question answering ## 💻 Usage Instructions To utilize Prometh-MOEM-V.01 in your projects: ```python pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer, pipeline import torch model = "Wtzwho/Prometh-MOEM-V.01" tokenizer = AutoTokenizer.from_pretrained(model) # Setup pipeline pipeline = pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) # Example query messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"])