File size: 12,856 Bytes
9206300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import torch
from torch import nn
from tasks.tts.ps_adv import PortaSpeechAdvTask, FastSpeechTask
from text_to_speech.utils.commons.hparams import hparams
from text_to_speech.utils.nn.seq_utils import group_hidden_by_segs


class PortaSpeechAdvMLMTask(PortaSpeechAdvTask):

    def build_scheduler(self, optimizer):
        return [
            FastSpeechTask.build_scheduler(self, optimizer[0]), # Generator Scheduler
            torch.optim.lr_scheduler.StepLR(optimizer=optimizer[1], # Discriminator Scheduler
                **hparams["discriminator_scheduler_params"]),
        ]

    def on_before_optimization(self, opt_idx):
        if opt_idx in [0, 2]:
            nn.utils.clip_grad_norm_(self.dp_params, hparams['clip_grad_norm'])
            if self.use_bert:
                nn.utils.clip_grad_norm_(self.bert_params, hparams['clip_grad_norm'])
                nn.utils.clip_grad_norm_(self.gen_params_except_bert_and_dp, hparams['clip_grad_norm'])
            else:
                nn.utils.clip_grad_norm_(self.gen_params_except_dp, hparams['clip_grad_norm'])
        else:
            nn.utils.clip_grad_norm_(self.disc_params, hparams["clip_grad_norm"])

    def on_after_optimization(self, epoch, batch_idx, optimizer, optimizer_idx):
        if self.scheduler is not None:
            self.scheduler[0].step(self.global_step // hparams['accumulate_grad_batches'])
            self.scheduler[1].step(self.global_step // hparams['accumulate_grad_batches'])


    def _training_step(self, sample, batch_idx, optimizer_idx):
        loss_output = {}
        loss_weights = {}
        disc_start = self.global_step >= hparams["disc_start_steps"] and hparams['lambda_mel_adv'] > 0
        if optimizer_idx == 0:
            #######################
            #      Generator      #
            #######################
            loss_output, model_out = self.run_model(sample, infer=False)
            self.model_out_gt = self.model_out = \
                {k: v.detach() for k, v in model_out.items() if isinstance(v, torch.Tensor)}
            if disc_start:
                mel_p = model_out['mel_out']
                if hasattr(self.model, 'out2mel'):
                    mel_p = self.model.out2mel(mel_p)
                o_ = self.mel_disc(mel_p)
                p_, pc_ = o_['y'], o_['y_c']
                if p_ is not None:
                    loss_output['a'] = self.mse_loss_fn(p_, p_.new_ones(p_.size()))
                    loss_weights['a'] = hparams['lambda_mel_adv']
                if pc_ is not None:
                    loss_output['ac'] = self.mse_loss_fn(pc_, pc_.new_ones(pc_.size()))
                    loss_weights['ac'] = hparams['lambda_mel_adv']
            else:
                return None

            loss_output2, model_out2 = self.run_contrastive_learning(sample)
            loss_output.update(loss_output2)
            model_out.update(model_out2)
            
        elif optimizer_idx == 1:
            #######################
            #    Discriminator    #
            #######################
            if disc_start and self.global_step % hparams['disc_interval'] == 0:
                model_out = self.model_out_gt
                mel_g = sample['mels']
                mel_p = model_out['mel_out']
                o = self.mel_disc(mel_g)
                p, pc = o['y'], o['y_c']
                o_ = self.mel_disc(mel_p)
                p_, pc_ = o_['y'], o_['y_c']
                if p_ is not None:
                    loss_output["r"] = self.mse_loss_fn(p, p.new_ones(p.size()))
                    loss_output["f"] = self.mse_loss_fn(p_, p_.new_zeros(p_.size()))
                if pc_ is not None:
                    loss_output["rc"] = self.mse_loss_fn(pc, pc.new_ones(pc.size()))
                    loss_output["fc"] = self.mse_loss_fn(pc_, pc_.new_zeros(pc_.size()))

        total_loss = sum([loss_weights.get(k, 1) * v for k, v in loss_output.items() if isinstance(v, torch.Tensor) and v.requires_grad])
        loss_output['batch_size'] = sample['txt_tokens'].size()[0]
        return total_loss, loss_output

    def run_contrastive_learning(self, sample):
        losses = {}
        outputs = {}

        bert = self.model.encoder.bert.bert
        bert_for_mlm = self.model.encoder.bert
        pooler = self.model.encoder.pooler
        sim = self.model.encoder.sim
        tokenizer = self.model.encoder.tokenizer
        ph_encoder = self.model.encoder

        if hparams['lambda_cl'] > 0:
            if hparams.get("cl_version", "v1") == "v1":
                cl_feats = sample['cl_feats']
                bs, _, t = cl_feats['cl_input_ids'].shape
                cl_input_ids = cl_feats['cl_input_ids'].reshape([bs*2, t])
                cl_attention_mask = cl_feats['cl_attention_mask'].reshape([bs*2, t])
                cl_token_type_ids = cl_feats['cl_token_type_ids'].reshape([bs*2, t])
                cl_output = bert(cl_input_ids, attention_mask=cl_attention_mask,token_type_ids=cl_token_type_ids,)
                pooler_output = pooler(cl_attention_mask, cl_output)
                pooler_output = pooler_output.reshape([bs, 2, -1])
                z1, z2 = pooler_output[:,0], pooler_output[:,1]

                cos_sim = sim(z1.unsqueeze(1), z2.unsqueeze(0))
                labels = torch.arange(cos_sim.size(0)).long().to(z1.device)
                ce_fn = nn.CrossEntropyLoss()
                cl_loss = ce_fn(cos_sim, labels)
                losses['cl_v'] = cl_loss.detach()
                losses['cl'] = cl_loss * hparams['lambda_cl']
            elif hparams['cl_version'] == "v2":
                # use the output of ph encoder as sentence embedding
                cl_feats = sample['cl_feats']
                bs, _, t = cl_feats['cl_input_ids'].shape
                cl_input_ids = cl_feats['cl_input_ids'].reshape([bs*2, t])
                cl_attention_mask = cl_feats['cl_attention_mask'].reshape([bs*2, t])
                cl_token_type_ids = cl_feats['cl_token_type_ids'].reshape([bs*2, t])
                txt_tokens = sample['txt_tokens']
                bert_feats = sample['bert_feats']
                src_nonpadding = (txt_tokens > 0).float()[:, :, None]
                ph_encoder_out1 = ph_encoder(txt_tokens, bert_feats=bert_feats, ph2word=sample['ph2word']) * src_nonpadding
                ph_encoder_out2 = ph_encoder(txt_tokens, bert_feats=bert_feats, ph2word=sample['ph2word']) * src_nonpadding
                # word_encoding1 = group_hidden_by_segs(ph_encoder_out1, sample['ph2word'], sample['ph2word'].max().item())
                # word_encoding2 = group_hidden_by_segs(ph_encoder_out2, sample['ph2word'], sample['ph2word'].max().item())
                z1 = ((ph_encoder_out1 * src_nonpadding).sum(1) / src_nonpadding.sum(1))
                z2 = ((ph_encoder_out2 * src_nonpadding).sum(1) / src_nonpadding.sum(1))

                cos_sim = sim(z1.unsqueeze(1), z2.unsqueeze(0))
                labels = torch.arange(cos_sim.size(0)).long().to(z1.device)
                ce_fn = nn.CrossEntropyLoss()
                cl_loss = ce_fn(cos_sim, labels)
                losses['cl_v'] = cl_loss.detach()
                losses['cl'] = cl_loss * hparams['lambda_cl']
            elif hparams['cl_version'] == "v3":
                # use the word-level contrastive learning
                cl_feats = sample['cl_feats']
                bs, _, t = cl_feats['cl_input_ids'].shape
                cl_input_ids = cl_feats['cl_input_ids'].reshape([bs*2, t])
                cl_attention_mask = cl_feats['cl_attention_mask'].reshape([bs*2, t])
                cl_token_type_ids = cl_feats['cl_token_type_ids'].reshape([bs*2, t])
                cl_output = bert(cl_input_ids, attention_mask=cl_attention_mask,token_type_ids=cl_token_type_ids,)
                cl_output = cl_output.last_hidden_state.reshape([-1, 768]) # [bs*2,t_w,768] ==> [bs*2*t_w, 768]
                cl_word_out = cl_output[cl_attention_mask.reshape([-1]).bool()] # [num_word*2, 768]
                cl_word_out = cl_word_out.view([-1, 2, 768])
                z1_total, z2_total = cl_word_out[:,0], cl_word_out[:,1] # [num_word, 768]
                ce_fn = nn.CrossEntropyLoss()
                start_idx = 0
                lengths = cl_attention_mask.sum(-1)
                cl_loss_accu = 0
                for i in range(bs):
                    length = lengths[i]
                    z1 = z1_total[start_idx:start_idx + length]
                    z2 = z2_total[start_idx:start_idx + length]
                    start_idx += length
                    cos_sim = sim(z1.unsqueeze(1), z2.unsqueeze(0))
                    labels = torch.arange(cos_sim.size(0)).long().to(z1.device)
                    cl_loss_accu += ce_fn(cos_sim, labels) * length
                cl_loss = cl_loss_accu / lengths.sum()
                losses['cl_v'] = cl_loss.detach()
                losses['cl'] = cl_loss * hparams['lambda_cl']
            elif hparams['cl_version'] == "v4":
                # with Wiki dataset
                cl_feats = sample['cl_feats']
                bs, _, t = cl_feats['cl_input_ids'].shape
                cl_input_ids = cl_feats['cl_input_ids'].reshape([bs*2, t])
                cl_attention_mask = cl_feats['cl_attention_mask'].reshape([bs*2, t])
                cl_token_type_ids = cl_feats['cl_token_type_ids'].reshape([bs*2, t])
                cl_output = bert(cl_input_ids, attention_mask=cl_attention_mask,token_type_ids=cl_token_type_ids,)
                pooler_output = pooler(cl_attention_mask, cl_output)
                pooler_output = pooler_output.reshape([bs, 2, -1])
                z1, z2 = pooler_output[:,0], pooler_output[:,1]

                cos_sim = sim(z1.unsqueeze(1), z2.unsqueeze(0))
                labels = torch.arange(cos_sim.size(0)).long().to(z1.device)
                ce_fn = nn.CrossEntropyLoss()
                cl_loss = ce_fn(cos_sim, labels)
                losses['cl_v'] = cl_loss.detach()
                losses['cl'] = cl_loss * hparams['lambda_cl']
            elif hparams['cl_version'] == "v5":
                # with NLI dataset
                cl_feats = sample['cl_feats']
                cl_input_ids = cl_feats['sent0']['cl_input_ids']
                cl_attention_mask = cl_feats['sent0']['cl_attention_mask']
                cl_token_type_ids = cl_feats['sent0']['cl_token_type_ids']
                cl_output = bert(cl_input_ids, attention_mask=cl_attention_mask,token_type_ids=cl_token_type_ids,)
                z1 = pooler_output_sent0 = pooler(cl_attention_mask, cl_output)

                cl_input_ids = cl_feats['sent1']['cl_input_ids']
                cl_attention_mask = cl_feats['sent1']['cl_attention_mask']
                cl_token_type_ids = cl_feats['sent1']['cl_token_type_ids']
                cl_output = bert(cl_input_ids, attention_mask=cl_attention_mask,token_type_ids=cl_token_type_ids,)
                z2 = pooler_output_sent1 = pooler(cl_attention_mask, cl_output)

                cl_input_ids = cl_feats['hard_neg']['cl_input_ids']
                cl_attention_mask = cl_feats['hard_neg']['cl_attention_mask']
                cl_token_type_ids = cl_feats['hard_neg']['cl_token_type_ids']
                cl_output = bert(cl_input_ids, attention_mask=cl_attention_mask,token_type_ids=cl_token_type_ids,)
                z3 = pooler_output_neg = pooler(cl_attention_mask, cl_output)

                cos_sim = sim(z1.unsqueeze(1), z2.unsqueeze(0))
                z1_z3_cos = sim(z1.unsqueeze(1), z3.unsqueeze(0))
                cos_sim = torch.cat([cos_sim, z1_z3_cos], 1) # [n_sent, n_sent * 2]
                labels = torch.arange(cos_sim.size(0)).long().to(cos_sim.device) # [n_sent, ]
                ce_fn = nn.CrossEntropyLoss()
                cl_loss = ce_fn(cos_sim, labels)
                losses['cl_v'] = cl_loss.detach()
                losses['cl'] = cl_loss * hparams['lambda_cl']
            else:
                raise NotImplementedError()

        if hparams['lambda_mlm'] > 0:
            cl_feats = sample['cl_feats']
            mlm_input_ids = cl_feats['mlm_input_ids']
            bs, t = mlm_input_ids.shape
            mlm_input_ids = mlm_input_ids.view((-1, mlm_input_ids.size(-1)))
            mlm_labels = cl_feats['mlm_labels']
            mlm_labels = mlm_labels.view(-1, mlm_labels.size(-1))
            mlm_attention_mask = cl_feats['mlm_attention_mask']

            prediction_scores = bert_for_mlm(mlm_input_ids, mlm_attention_mask).logits
            ce_fn = nn.CrossEntropyLoss(reduction="none")
            mlm_loss = ce_fn(prediction_scores.view(-1, tokenizer.vocab_size), mlm_labels.view(-1))
            mlm_loss = mlm_loss[mlm_labels.view(-1)>=0].mean()
            losses['mlm'] = mlm_loss * hparams['lambda_mlm']
            losses['mlm_v'] = mlm_loss.detach()

        return losses, outputs