File size: 14,234 Bytes
9206300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import math
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import Linear

from text_to_speech.modules.commons.conv import ConvBlocks, ConditionalConvBlocks
from text_to_speech.modules.commons.layers import Embedding
from text_to_speech.modules.commons.rel_transformer import RelTransformerEncoder
from text_to_speech.modules.commons.transformer import MultiheadAttention, FFTBlocks
from text_to_speech.modules.tts.commons.align_ops import clip_mel2token_to_multiple, build_word_mask, expand_states, mel2ph_to_mel2word
from text_to_speech.modules.tts.fs import FS_DECODERS, FastSpeech
from text_to_speech.modules.tts.portaspeech.fvae import SyntaFVAE, FVAE
from text_to_speech.utils.commons.meters import Timer
from text_to_speech.utils.nn.seq_utils import group_hidden_by_segs
from text_to_speech.modules.commons.nar_tts_modules import SyntaDurationPredictor


class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        """

        :param x: [B, T]
        :return: [B, T, H]
        """
        device = x.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
        emb = x[:, :, None] * emb[None, :]
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb


class SyntaSpeech(FastSpeech):
    def __init__(self, ph_dict_size, word_dict_size, hparams, out_dims=None):
        super().__init__(ph_dict_size, hparams, out_dims)
        # build linguistic encoder
        if hparams['num_spk'] > 1:
            self.spk_embed_proj = Embedding(hparams['num_spk'], self.hidden_size)
        if hparams['use_word_encoder']:
            self.word_encoder = RelTransformerEncoder(
                word_dict_size, self.hidden_size, self.hidden_size, self.hidden_size, 2,
                hparams['word_enc_layers'], hparams['enc_ffn_kernel_size'])
        if hparams['dur_level'] == 'word':
            if hparams['word_encoder_type'] == 'rel_fft':
                self.ph2word_encoder = RelTransformerEncoder(
                    0, self.hidden_size, self.hidden_size, self.hidden_size, 2,
                    hparams['word_enc_layers'], hparams['enc_ffn_kernel_size'])
            if hparams['word_encoder_type'] == 'fft':
                self.ph2word_encoder = FFTBlocks(
                    self.hidden_size, hparams['word_enc_layers'], 1, num_heads=hparams['num_heads'])
            self.sin_pos = SinusoidalPosEmb(self.hidden_size)
            self.enc_pos_proj = nn.Linear(2 * self.hidden_size, self.hidden_size)
            self.dec_query_proj = nn.Linear(2 * self.hidden_size, self.hidden_size)
            self.dec_res_proj = nn.Linear(2 * self.hidden_size, self.hidden_size)
            self.attn = MultiheadAttention(self.hidden_size, 1, encoder_decoder_attention=True, bias=False)
            self.attn.enable_torch_version = False
            if hparams['text_encoder_postnet']:
                self.text_encoder_postnet = ConvBlocks(
                    self.hidden_size, self.hidden_size, [1] * 3, 5, layers_in_block=2)
        else:
            self.sin_pos = SinusoidalPosEmb(self.hidden_size)
        
        predictor_hidden = hparams['predictor_hidden'] if hparams['predictor_hidden'] > 0 else self.hidden_size
        self.dur_predictor = SyntaDurationPredictor(
            self.hidden_size,
            n_chans=predictor_hidden,
            n_layers=hparams['dur_predictor_layers'],
            dropout_rate=hparams['predictor_dropout'],
            kernel_size=hparams['dur_predictor_kernel'])
        # build VAE decoder
        if hparams['use_fvae']:
            del self.decoder
            del self.mel_out
            if hparams.get("use_gae_in_prior", True):
                self.fvae = SyntaFVAE(
                    c_in_out=self.out_dims,
                    hidden_size=hparams['fvae_enc_dec_hidden'], c_latent=hparams['latent_size'],
                    kernel_size=hparams['fvae_kernel_size'],
                    enc_n_layers=hparams['fvae_enc_n_layers'],
                    dec_n_layers=hparams['fvae_dec_n_layers'],
                    c_cond=self.hidden_size,
                    use_prior_flow=hparams['use_prior_flow'],
                    flow_hidden=hparams['prior_flow_hidden'],
                    flow_kernel_size=hparams['prior_flow_kernel_size'],
                    flow_n_steps=hparams['prior_flow_n_blocks'],
                    strides=[hparams['fvae_strides']],
                    encoder_type=hparams['fvae_encoder_type'],
                    decoder_type=hparams['fvae_decoder_type'],
                )
            else:
                self.fvae = FVAE(
                    c_in_out=self.out_dims,
                    hidden_size=hparams['fvae_enc_dec_hidden'], c_latent=hparams['latent_size'],
                    kernel_size=hparams['fvae_kernel_size'],
                    enc_n_layers=hparams['fvae_enc_n_layers'],
                    dec_n_layers=hparams['fvae_dec_n_layers'],
                    c_cond=self.hidden_size,
                    use_prior_flow=hparams['use_prior_flow'],
                    flow_hidden=hparams['prior_flow_hidden'],
                    flow_kernel_size=hparams['prior_flow_kernel_size'],
                    flow_n_steps=hparams['prior_flow_n_blocks'],
                    strides=[hparams['fvae_strides']],
                    encoder_type=hparams['fvae_encoder_type'],
                    decoder_type=hparams['fvae_decoder_type'],
                )
        else:
            self.decoder = FS_DECODERS[hparams['decoder_type']](hparams)
            self.mel_out = Linear(self.hidden_size, self.out_dims, bias=True)
        if hparams['use_pitch_embed']:
            self.pitch_embed = Embedding(300, self.hidden_size, 0)
        if self.hparams['add_word_pos']:
            self.word_pos_proj = Linear(self.hidden_size, self.hidden_size)

    def build_embedding(self, dictionary, embed_dim):
        num_embeddings = len(dictionary)
        emb = Embedding(num_embeddings, embed_dim, self.padding_idx)
        return emb

    def forward(self, txt_tokens, word_tokens, ph2word, word_len, mel2word=None, mel2ph=None,
                spk_embed=None, spk_id=None, pitch=None, infer=False, tgt_mels=None,
                global_step=None, graph_lst=None, etypes_lst=None, *args, **kwargs):     

        if self.hparams['use_spk_embed']:
            spk_embed = spk_embed
        elif self.hparams['use_spk_id']:
            spk_embed = self.spk_embed_proj(spk_id)[:, None, :]  
        else:
            spk_embed = 0

        ret = {}
        style_embed = self.forward_style_embed(spk_embed, spk_id) # speaker embedding, [B, 1, C]
        x, tgt_nonpadding = self.run_text_encoder(
            txt_tokens, word_tokens, ph2word, word_len, mel2word, mel2ph, style_embed, ret, graph_lst=graph_lst, etypes_lst=etypes_lst, **kwargs)
        x = x + style_embed # it maybe necessary to achieve multi-speaker
        x = x * tgt_nonpadding
        ret['nonpadding'] = tgt_nonpadding
        if self.hparams['use_pitch_embed']:
            x = x + self.pitch_embed(pitch)
        ret['decoder_inp'] = x
        if infer and (mel2ph is None or mel2word is None):
            mel2word = ret['mel2word']
        ret['mel_out_fvae'] = ret['mel_out'] = self.run_decoder(x, tgt_nonpadding, ret, infer, tgt_mels, global_step,
                mel2word=mel2word, ph2word=ph2word, graph_lst=graph_lst, etypes_lst=etypes_lst)
        return ret

    def run_text_encoder(self, txt_tokens, word_tokens, ph2word, word_len, mel2word, mel2ph, style_embed, ret, graph_lst, etypes_lst, **kwargs):
        word2word = torch.arange(word_len)[None, :].to(ph2word.device) + 1  # [B, T_mel, T_word]
        src_nonpadding = (txt_tokens > 0).float()[:, :, None]
        use_bert = self.hparams.get("use_bert") is True
        if use_bert:
            ph_encoder_out = self.encoder(txt_tokens, bert_feats=kwargs['bert_feats'], ph2word=ph2word,
                graph_lst=graph_lst, etypes_lst=etypes_lst,
                cl_feats=kwargs['cl_feats'], ret=ret) * src_nonpadding + style_embed
        else:
            ph_encoder_out = self.encoder(txt_tokens) * src_nonpadding + style_embed
        if self.hparams['use_word_encoder']:
            word_encoder_out = self.word_encoder(word_tokens) + style_embed
            ph_encoder_out = ph_encoder_out + expand_states(word_encoder_out, ph2word)
        
        dur_input = ph_encoder_out * src_nonpadding
        if self.hparams['dur_level'] == 'word':
            word_encoder_out = 0
            h_ph_gb_word = group_hidden_by_segs(ph_encoder_out, ph2word, word_len)[0]
            word_encoder_out = word_encoder_out + self.ph2word_encoder(h_ph_gb_word)
            if self.hparams['use_word_encoder']:
                word_encoder_out = word_encoder_out + self.word_encoder(word_tokens)
            mel2word = self.forward_dur(dur_input, mel2word, ret, ph2word=ph2word, word_len=word_len, graph_lst=graph_lst, etypes_lst=etypes_lst)
            mel2word = clip_mel2token_to_multiple(mel2word, self.hparams['frames_multiple'])
            ret['mel2word'] = mel2word
            tgt_nonpadding = (mel2word > 0).float()[:, :, None]
            enc_pos = self.get_pos_embed(word2word, ph2word)  # [B, T_ph, H]
            dec_pos = self.get_pos_embed(word2word, mel2word)  # [B, T_mel, H]
            dec_word_mask = build_word_mask(mel2word, ph2word)  # [B, T_mel, T_ph]
            x, weight = self.attention(ph_encoder_out, enc_pos, word_encoder_out, dec_pos, mel2word, dec_word_mask)
            if self.hparams['add_word_pos']:
                x = x + self.word_pos_proj(dec_pos)
            ret['attn'] = weight
        else:
            mel2ph = self.forward_dur(dur_input, mel2ph, ret)
            mel2ph = clip_mel2token_to_multiple(mel2ph, self.hparams['frames_multiple'])
            mel2word = mel2ph_to_mel2word(mel2ph, ph2word)
            x = expand_states(ph_encoder_out, mel2ph)
            if self.hparams['add_word_pos']:
                dec_pos = self.get_pos_embed(word2word, mel2word)  # [B, T_mel, H]
                x = x + self.word_pos_proj(dec_pos)
            tgt_nonpadding = (mel2ph > 0).float()[:, :, None]
        if self.hparams['use_word_encoder']:
            x = x + expand_states(word_encoder_out, mel2word)
        return x, tgt_nonpadding

    def attention(self, ph_encoder_out, enc_pos, word_encoder_out, dec_pos, mel2word, dec_word_mask):
        ph_kv = self.enc_pos_proj(torch.cat([ph_encoder_out, enc_pos], -1))
        word_enc_out_expend = expand_states(word_encoder_out, mel2word)
        word_enc_out_expend = torch.cat([word_enc_out_expend, dec_pos], -1)
        if self.hparams['text_encoder_postnet']:
            word_enc_out_expend = self.dec_res_proj(word_enc_out_expend)
            word_enc_out_expend = self.text_encoder_postnet(word_enc_out_expend)
            dec_q = x_res = word_enc_out_expend
        else:
            dec_q = self.dec_query_proj(word_enc_out_expend)
            x_res = self.dec_res_proj(word_enc_out_expend)
        ph_kv, dec_q = ph_kv.transpose(0, 1), dec_q.transpose(0, 1)
        x, (weight, _) = self.attn(dec_q, ph_kv, ph_kv, attn_mask=(1 - dec_word_mask) * -1e9)
        x = x.transpose(0, 1)
        x = x + x_res
        return x, weight

    def run_decoder(self, x, tgt_nonpadding, ret, infer, tgt_mels=None, global_step=0,
                    mel2word=None, ph2word=None, graph_lst=None, etypes_lst=None):
        if not self.hparams['use_fvae']:
            x = self.decoder(x)
            x = self.mel_out(x)
            ret['kl'] = 0
            return x * tgt_nonpadding
        else:
            # x is the phoneme encoding
            x = x.transpose(1, 2)  # [B, H, T]
            tgt_nonpadding_BHT = tgt_nonpadding.transpose(1, 2)  # [B, H, T]
            if infer:
                z = self.fvae(cond=x, infer=True, mel2word=mel2word, ph2word=ph2word, graph_lst=graph_lst, etypes_lst=etypes_lst)
            else:
                tgt_mels = tgt_mels.transpose(1, 2)  # [B, 80, T]
                z, ret['kl'], ret['z_p'], ret['m_q'], ret['logs_q'] = self.fvae(
                    tgt_mels, tgt_nonpadding_BHT, cond=x, mel2word=mel2word, ph2word=ph2word, graph_lst=graph_lst, etypes_lst=etypes_lst)
                if global_step < self.hparams['posterior_start_steps']:
                    z = torch.randn_like(z)
            x_recon = self.fvae.decoder(z, nonpadding=tgt_nonpadding_BHT, cond=x).transpose(1, 2)
            ret['pre_mel_out'] = x_recon
            return x_recon

    def forward_dur(self, dur_input, mel2word, ret, **kwargs):
        """

        :param dur_input: [B, T_txt, H]
        :param mel2ph: [B, T_mel]
        :param txt_tokens: [B, T_txt]
        :param ret:
        :return:
        """
        word_len = kwargs['word_len']
        ph2word = kwargs['ph2word']
        graph_lst = kwargs['graph_lst']
        etypes_lst = kwargs['etypes_lst']
        src_padding = dur_input.data.abs().sum(-1) == 0
        dur_input = dur_input.detach() + self.hparams['predictor_grad'] * (dur_input - dur_input.detach())
        dur = self.dur_predictor(dur_input, src_padding, ph2word, graph_lst, etypes_lst)

        B, T_ph = ph2word.shape
        dur = torch.zeros([B, word_len.max() + 1]).to(ph2word.device).scatter_add(1, ph2word, dur)
        dur = dur[:, 1:]
        ret['dur'] = dur
        if mel2word is None:
            mel2word = self.length_regulator(dur).detach()
        return mel2word

    def get_pos_embed(self, word2word, x2word):
        x_pos = build_word_mask(word2word, x2word).float()  # [B, T_word, T_ph]
        x_pos = (x_pos.cumsum(-1) / x_pos.sum(-1).clamp(min=1)[..., None] * x_pos).sum(1)
        x_pos = self.sin_pos(x_pos.float())  # [B, T_ph, H]
        return x_pos

    def store_inverse_all(self):
        def remove_weight_norm(m):
            try:
                if hasattr(m, 'store_inverse'):
                    m.store_inverse()
                nn.utils.remove_weight_norm(m)
            except ValueError:  # this module didn't have weight norm
                return

        self.apply(remove_weight_norm)