File size: 14,998 Bytes
9206300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import torch.optim
import torch.utils.data
import numpy as np
import torch
import torch.optim
import torch.utils.data
import torch.distributions
from text_to_speech.utils.audio.pitch.utils import norm_interp_f0, denorm_f0
from text_to_speech.utils.commons.dataset_utils import BaseDataset, collate_1d_or_2d
from text_to_speech.utils.commons.indexed_datasets import IndexedDataset
from text_to_speech.utils.commons.hparams import hparams
import random 


class BaseSpeechDataset(BaseDataset):
    def __init__(self, prefix, shuffle=False, items=None, data_dir=None):
        super().__init__(shuffle)
        from text_to_speech.utils.commons.hparams import hparams
        self.data_dir = hparams['binary_data_dir'] if data_dir is None else data_dir
        self.prefix = prefix
        self.hparams = hparams
        self.indexed_ds = None
        if items is not None:
            self.indexed_ds = items
            self.sizes = [1] * len(items)
            self.avail_idxs = list(range(len(self.sizes)))
        else:
            self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy')
            if prefix == 'test' and len(hparams['test_ids']) > 0:
                self.avail_idxs = hparams['test_ids']
            else:
                self.avail_idxs = list(range(len(self.sizes)))
            if prefix == 'train' and hparams['min_frames'] > 0:
                self.avail_idxs = [x for x in self.avail_idxs if self.sizes[x] >= hparams['min_frames']]
            try:
                self.sizes = [self.sizes[i] for i in self.avail_idxs]
            except:
                tmp_sizes = []
                for i in self.avail_idxs:
                    try:
                        tmp_sizes.append(self.sizes[i])
                    except:
                        continue
                self.sizes = tmp_sizes
                
    def _get_item(self, index):
        if hasattr(self, 'avail_idxs') and self.avail_idxs is not None:
            index = self.avail_idxs[index]
        if self.indexed_ds is None:
            self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
        return self.indexed_ds[index]

    def __getitem__(self, index):
        hparams = self.hparams
        item = self._get_item(index)
        assert len(item['mel']) == self.sizes[index], (len(item['mel']), self.sizes[index])
        max_frames = hparams['max_frames']
        spec = torch.Tensor(item['mel'])[:max_frames]
        max_frames = spec.shape[0] // hparams['frames_multiple'] * hparams['frames_multiple']
        spec = spec[:max_frames]
        ph_token = torch.LongTensor(item['ph_token'][:hparams['max_input_tokens']])
        sample = {
            "id": index,
            "item_name": item['item_name'],
            "text": item['txt'],
            "txt_token": ph_token,
            "mel": spec,
            "mel_nonpadding": spec.abs().sum(-1) > 0,
        }
        if hparams['use_spk_embed']:
            sample["spk_embed"] = torch.Tensor(item['spk_embed'])
        if hparams['use_spk_id']:
            sample["spk_id"] = int(item['spk_id'])
        return sample

    def collater(self, samples):
        if len(samples) == 0:
            return {}
        hparams = self.hparams
        ids = [s['id'] for s in samples]
        item_names = [s['item_name'] for s in samples]
        text = [s['text'] for s in samples]
        txt_tokens = collate_1d_or_2d([s['txt_token'] for s in samples], 0)
        mels = collate_1d_or_2d([s['mel'] for s in samples], 0.0)
        txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples])
        mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples])

        batch = {
            'id': ids,
            'item_name': item_names,
            'nsamples': len(samples),
            'text': text,
            'txt_tokens': txt_tokens,
            'txt_lengths': txt_lengths,
            'mels': mels,
            'mel_lengths': mel_lengths,
        }

        if hparams['use_spk_embed']:
            spk_embed = torch.stack([s['spk_embed'] for s in samples])
            batch['spk_embed'] = spk_embed
        if hparams['use_spk_id']:
            spk_ids = torch.LongTensor([s['spk_id'] for s in samples])
            batch['spk_ids'] = spk_ids
        return batch


class FastSpeechDataset(BaseSpeechDataset):
    def __getitem__(self, index):
        sample = super(FastSpeechDataset, self).__getitem__(index)
        item = self._get_item(index)
        hparams = self.hparams
        mel = sample['mel']
        T = mel.shape[0]
        ph_token = sample['txt_token']
        sample['mel2ph'] = mel2ph = torch.LongTensor(item['mel2ph'])[:T]
        if hparams['use_pitch_embed']:
            assert 'f0' in item
            pitch = torch.LongTensor(item.get(hparams.get('pitch_key', 'pitch')))[:T]
            f0, uv = norm_interp_f0(item["f0"][:T])
            uv = torch.FloatTensor(uv)
            f0 = torch.FloatTensor(f0)
            if hparams['pitch_type'] == 'ph':
                if "f0_ph" in item:
                    f0 = torch.FloatTensor(item['f0_ph'])
                else:
                    f0 = denorm_f0(f0, None)
                f0_phlevel_sum = torch.zeros_like(ph_token).float().scatter_add(0, mel2ph - 1, f0)
                f0_phlevel_num = torch.zeros_like(ph_token).float().scatter_add(
                    0, mel2ph - 1, torch.ones_like(f0)).clamp_min(1)
                f0_ph = f0_phlevel_sum / f0_phlevel_num
                f0, uv = norm_interp_f0(f0_ph)
        else:
            f0, uv, pitch = None, None, None
        sample["f0"], sample["uv"], sample["pitch"] = f0, uv, pitch
        return sample

    def collater(self, samples):
        if len(samples) == 0:
            return {}
        batch = super(FastSpeechDataset, self).collater(samples)
        hparams = self.hparams
        if hparams['use_pitch_embed']:
            f0 = collate_1d_or_2d([s['f0'] for s in samples], 0.0)
            pitch = collate_1d_or_2d([s['pitch'] for s in samples])
            uv = collate_1d_or_2d([s['uv'] for s in samples])
        else:
            f0, uv, pitch = None, None, None
        mel2ph = collate_1d_or_2d([s['mel2ph'] for s in samples], 0.0)
        batch.update({
            'mel2ph': mel2ph,
            'pitch': pitch,
            'f0': f0,
            'uv': uv,
        })
        return batch

class FastSpeechWordDataset(FastSpeechDataset):
    def __init__(self, prefix, shuffle=False, items=None, data_dir=None):
        super().__init__(prefix, shuffle, items, data_dir)
        # BERT contrastive loss & mlm loss
        # from transformers import AutoTokenizer
        # if hparams['ds_name'] in ['ljspeech', 'libritts']:
        #     self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
        # elif hparams['ds_name'] == 'biaobei':
        #     self.tokenizer = AutoTokenizer.from_pretrained('bert-base-chinese')
        # else:
        #     raise NotImplementedError()
        # self.mlm_probability = 0.15
        # if hparams.get("cl_ds_name") is None:
        #     pass
        # elif hparams['cl_ds_name'] == "wiki":
        #     from experimental_yerfor.simcse_datasets import WikiDataset
        #     self.cl_dataset = WikiDataset(prefix=prefix)
        #     shuffle = True if prefix == 'train' else False
        #     endless = True
        #     num_workers = None if prefix == 'train' else 0
        #     self.cl_dataloader = self.cl_dataset.build_dataloader(shuffle=shuffle, max_tokens=hparams.get("cl_max_tokens", 3200),
        #         max_sentences=hparams.get("cl_max_sentences", 64), endless=endless, num_workers=num_workers)
        #     self.cl_dl_iter = iter(self.cl_dataloader)
        # elif hparams['cl_ds_name'] == "nli":
        #     from experimental_yerfor.simcse_datasets import NLIDataset
        #     self.cl_dataset = NLIDataset(prefix=prefix)
        #     shuffle = True if prefix == 'train' else False
        #     endless = True
        #     num_workers = None if prefix == 'train' else 0
        #     self.cl_dataloader = self.cl_dataset.build_dataloader(shuffle=shuffle, max_tokens=hparams.get("cl_max_tokens", 4800),
        #         max_sentences=hparams.get("cl_max_sentences", 128), endless=endless, num_workers=num_workers)
        #     self.cl_dl_iter = iter(self.cl_dataloader)

    def __getitem__(self, index):
        sample = super().__getitem__(index)
        item = self._get_item(index)
        max_frames = sample['mel'].shape[0]
        if 'word' in item:
            sample['words'] = item['word']
            sample["ph_words"] = item["ph_gb_word"]
            sample["word_tokens"] = torch.LongTensor(item["word_token"])
        else:
            sample['words'] = item['words']
            sample["ph_words"] = " ".join(item["ph_words"])
            sample["word_tokens"] = torch.LongTensor(item["word_tokens"])
        sample["mel2word"] = torch.LongTensor(item.get("mel2word"))[:max_frames]
        sample["ph2word"] = torch.LongTensor(item['ph2word'][:self.hparams['max_input_tokens']])

        # SyntaSpeech related features
        # sample['dgl_graph'] = item['dgl_graph']
        # sample['edge_types'] = item['edge_types']

        # BERT related features
        # sample['bert_token'] = item['bert_token']
        # sample['bert_input_ids'] = torch.LongTensor(item['bert_input_ids'])
        # sample['bert_token2word'] = torch.LongTensor(item['bert_token2word'])
        # sample['bert_attention_mask'] = torch.LongTensor(item['bert_attention_mask'])
        # sample['bert_token_type_ids'] = torch.LongTensor(item['bert_token_type_ids'])

        return sample

    def collater(self, samples):
        samples = [s for s in samples if s is not None]
        batch = super().collater(samples)
        ph_words = [s['ph_words'] for s in samples]
        batch['ph_words'] = ph_words
        word_tokens = collate_1d_or_2d([s['word_tokens'] for s in samples], 0)
        batch['word_tokens'] = word_tokens
        mel2word = collate_1d_or_2d([s['mel2word'] for s in samples], 0)
        batch['mel2word'] = mel2word
        ph2word = collate_1d_or_2d([s['ph2word'] for s in samples], 0)
        batch['ph2word'] = ph2word
        batch['words'] = [s['words'] for s in samples]
        batch['word_lengths'] = torch.LongTensor([len(s['word_tokens']) for s in samples])
        if self.hparams['use_word_input']: # always False
            batch['txt_tokens'] = batch['word_tokens']
            batch['txt_lengths'] = torch.LongTensor([s['word_tokens'].numel() for s in samples])
            batch['mel2ph'] = batch['mel2word']
        
        # SyntaSpeech
        # graph_lst, etypes_lst = [], [] # new features for Graph-based SDP
        # for s in samples:
        #     graph_lst.append(s['dgl_graph'])
        #     etypes_lst.append(s['edge_types'])
        # batch.update({
        #     'graph_lst': graph_lst,
        #     'etypes_lst': etypes_lst,
        # })

        # BERT
        # batch['bert_feats'] = {}
        # batch['bert_feats']['bert_tokens'] = [s['bert_token'] for s in samples]
        # bert_input_ids = collate_1d_or_2d([s['bert_input_ids'] for s in samples], 0)
        # batch['bert_feats']['bert_input_ids'] = bert_input_ids
        # bert_token2word = collate_1d_or_2d([s['bert_token2word'] for s in samples], 0)
        # batch['bert_feats']['bert_token2word'] = bert_token2word
        # bert_attention_mask = collate_1d_or_2d([s['bert_attention_mask'] for s in samples], 0)
        # batch['bert_feats']['bert_attention_mask'] = bert_attention_mask
        # bert_token_type_ids = collate_1d_or_2d([s['bert_token_type_ids'] for s in samples], 0)
        # batch['bert_feats']['bert_token_type_ids'] = bert_token_type_ids
        
        # BERT contrastive loss & mlm loss & electra loss
        # if hparams.get("cl_ds_name") is None:
        #     batch['cl_feats'] = {}
        #     batch['cl_feats']['cl_input_ids'] = batch['bert_feats']['bert_input_ids'].unsqueeze(1).repeat([1,2,1])
        #     batch['cl_feats']['cl_token2word'] = batch['bert_feats']['bert_token2word'].unsqueeze(1).repeat([1,2,1])
        #     batch['cl_feats']['cl_attention_mask'] = batch['bert_feats']['bert_attention_mask'].unsqueeze(1).repeat([1,2,1])
        #     batch['cl_feats']['cl_token_type_ids'] = batch['bert_feats']['bert_token_type_ids'].unsqueeze(1).repeat([1,2,1])
        #     bs, _, t = batch['cl_feats']['cl_input_ids'].shape
        #     mlm_input_ids, mlm_labels = self.mask_tokens(batch['bert_feats']['bert_input_ids'].reshape([bs, t]))
        #     batch['cl_feats']["mlm_input_ids"] = mlm_input_ids.reshape([bs, t])
        #     batch['cl_feats']["mlm_labels"] = mlm_labels.reshape([bs, t])
        #     batch['cl_feats']["mlm_attention_mask"] = batch['bert_feats']['bert_attention_mask']
        # elif hparams['cl_ds_name'] in ["wiki", "nli"]:
        #     try:
        #         cl_feats = self.cl_dl_iter.__next__()
        #     except:
        #         self.cl_dl_iter = iter(self.cl_dataloader)
        #         cl_feats = self.cl_dl_iter.__next__()
        #     batch['cl_feats'] = cl_feats
        return batch

    # def mask_tokens(self, inputs, special_tokens_mask=None):
    #     """
    #     Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
    #     """
    #     inputs = inputs.clone()
    #     labels = inputs.clone()
    #     # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
    #     probability_matrix = torch.full(labels.shape, self.mlm_probability)
    #     if special_tokens_mask is None:
    #         special_tokens_mask = [
    #             self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
    #         ]
    #         special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
    #     else:
    #         special_tokens_mask = special_tokens_mask.bool()

    #     probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
    #     masked_indices = torch.bernoulli(probability_matrix).bool()
    #     labels[~masked_indices] = -100  # We only compute loss on masked tokens

    #     # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
    #     indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
    #     inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)

    #     # 10% of the time, we replace masked input tokens with random word
    #     indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
    #     random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
    #     inputs[indices_random] = random_words[indices_random]

    #     # The rest of the time (10% of the time) we keep the masked input tokens unchanged
    #     return inputs, labels