Spaces:
Build error
Build error
File size: 14,998 Bytes
9206300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import torch.optim
import torch.utils.data
import numpy as np
import torch
import torch.optim
import torch.utils.data
import torch.distributions
from text_to_speech.utils.audio.pitch.utils import norm_interp_f0, denorm_f0
from text_to_speech.utils.commons.dataset_utils import BaseDataset, collate_1d_or_2d
from text_to_speech.utils.commons.indexed_datasets import IndexedDataset
from text_to_speech.utils.commons.hparams import hparams
import random
class BaseSpeechDataset(BaseDataset):
def __init__(self, prefix, shuffle=False, items=None, data_dir=None):
super().__init__(shuffle)
from text_to_speech.utils.commons.hparams import hparams
self.data_dir = hparams['binary_data_dir'] if data_dir is None else data_dir
self.prefix = prefix
self.hparams = hparams
self.indexed_ds = None
if items is not None:
self.indexed_ds = items
self.sizes = [1] * len(items)
self.avail_idxs = list(range(len(self.sizes)))
else:
self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy')
if prefix == 'test' and len(hparams['test_ids']) > 0:
self.avail_idxs = hparams['test_ids']
else:
self.avail_idxs = list(range(len(self.sizes)))
if prefix == 'train' and hparams['min_frames'] > 0:
self.avail_idxs = [x for x in self.avail_idxs if self.sizes[x] >= hparams['min_frames']]
try:
self.sizes = [self.sizes[i] for i in self.avail_idxs]
except:
tmp_sizes = []
for i in self.avail_idxs:
try:
tmp_sizes.append(self.sizes[i])
except:
continue
self.sizes = tmp_sizes
def _get_item(self, index):
if hasattr(self, 'avail_idxs') and self.avail_idxs is not None:
index = self.avail_idxs[index]
if self.indexed_ds is None:
self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
return self.indexed_ds[index]
def __getitem__(self, index):
hparams = self.hparams
item = self._get_item(index)
assert len(item['mel']) == self.sizes[index], (len(item['mel']), self.sizes[index])
max_frames = hparams['max_frames']
spec = torch.Tensor(item['mel'])[:max_frames]
max_frames = spec.shape[0] // hparams['frames_multiple'] * hparams['frames_multiple']
spec = spec[:max_frames]
ph_token = torch.LongTensor(item['ph_token'][:hparams['max_input_tokens']])
sample = {
"id": index,
"item_name": item['item_name'],
"text": item['txt'],
"txt_token": ph_token,
"mel": spec,
"mel_nonpadding": spec.abs().sum(-1) > 0,
}
if hparams['use_spk_embed']:
sample["spk_embed"] = torch.Tensor(item['spk_embed'])
if hparams['use_spk_id']:
sample["spk_id"] = int(item['spk_id'])
return sample
def collater(self, samples):
if len(samples) == 0:
return {}
hparams = self.hparams
ids = [s['id'] for s in samples]
item_names = [s['item_name'] for s in samples]
text = [s['text'] for s in samples]
txt_tokens = collate_1d_or_2d([s['txt_token'] for s in samples], 0)
mels = collate_1d_or_2d([s['mel'] for s in samples], 0.0)
txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples])
mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples])
batch = {
'id': ids,
'item_name': item_names,
'nsamples': len(samples),
'text': text,
'txt_tokens': txt_tokens,
'txt_lengths': txt_lengths,
'mels': mels,
'mel_lengths': mel_lengths,
}
if hparams['use_spk_embed']:
spk_embed = torch.stack([s['spk_embed'] for s in samples])
batch['spk_embed'] = spk_embed
if hparams['use_spk_id']:
spk_ids = torch.LongTensor([s['spk_id'] for s in samples])
batch['spk_ids'] = spk_ids
return batch
class FastSpeechDataset(BaseSpeechDataset):
def __getitem__(self, index):
sample = super(FastSpeechDataset, self).__getitem__(index)
item = self._get_item(index)
hparams = self.hparams
mel = sample['mel']
T = mel.shape[0]
ph_token = sample['txt_token']
sample['mel2ph'] = mel2ph = torch.LongTensor(item['mel2ph'])[:T]
if hparams['use_pitch_embed']:
assert 'f0' in item
pitch = torch.LongTensor(item.get(hparams.get('pitch_key', 'pitch')))[:T]
f0, uv = norm_interp_f0(item["f0"][:T])
uv = torch.FloatTensor(uv)
f0 = torch.FloatTensor(f0)
if hparams['pitch_type'] == 'ph':
if "f0_ph" in item:
f0 = torch.FloatTensor(item['f0_ph'])
else:
f0 = denorm_f0(f0, None)
f0_phlevel_sum = torch.zeros_like(ph_token).float().scatter_add(0, mel2ph - 1, f0)
f0_phlevel_num = torch.zeros_like(ph_token).float().scatter_add(
0, mel2ph - 1, torch.ones_like(f0)).clamp_min(1)
f0_ph = f0_phlevel_sum / f0_phlevel_num
f0, uv = norm_interp_f0(f0_ph)
else:
f0, uv, pitch = None, None, None
sample["f0"], sample["uv"], sample["pitch"] = f0, uv, pitch
return sample
def collater(self, samples):
if len(samples) == 0:
return {}
batch = super(FastSpeechDataset, self).collater(samples)
hparams = self.hparams
if hparams['use_pitch_embed']:
f0 = collate_1d_or_2d([s['f0'] for s in samples], 0.0)
pitch = collate_1d_or_2d([s['pitch'] for s in samples])
uv = collate_1d_or_2d([s['uv'] for s in samples])
else:
f0, uv, pitch = None, None, None
mel2ph = collate_1d_or_2d([s['mel2ph'] for s in samples], 0.0)
batch.update({
'mel2ph': mel2ph,
'pitch': pitch,
'f0': f0,
'uv': uv,
})
return batch
class FastSpeechWordDataset(FastSpeechDataset):
def __init__(self, prefix, shuffle=False, items=None, data_dir=None):
super().__init__(prefix, shuffle, items, data_dir)
# BERT contrastive loss & mlm loss
# from transformers import AutoTokenizer
# if hparams['ds_name'] in ['ljspeech', 'libritts']:
# self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
# elif hparams['ds_name'] == 'biaobei':
# self.tokenizer = AutoTokenizer.from_pretrained('bert-base-chinese')
# else:
# raise NotImplementedError()
# self.mlm_probability = 0.15
# if hparams.get("cl_ds_name") is None:
# pass
# elif hparams['cl_ds_name'] == "wiki":
# from experimental_yerfor.simcse_datasets import WikiDataset
# self.cl_dataset = WikiDataset(prefix=prefix)
# shuffle = True if prefix == 'train' else False
# endless = True
# num_workers = None if prefix == 'train' else 0
# self.cl_dataloader = self.cl_dataset.build_dataloader(shuffle=shuffle, max_tokens=hparams.get("cl_max_tokens", 3200),
# max_sentences=hparams.get("cl_max_sentences", 64), endless=endless, num_workers=num_workers)
# self.cl_dl_iter = iter(self.cl_dataloader)
# elif hparams['cl_ds_name'] == "nli":
# from experimental_yerfor.simcse_datasets import NLIDataset
# self.cl_dataset = NLIDataset(prefix=prefix)
# shuffle = True if prefix == 'train' else False
# endless = True
# num_workers = None if prefix == 'train' else 0
# self.cl_dataloader = self.cl_dataset.build_dataloader(shuffle=shuffle, max_tokens=hparams.get("cl_max_tokens", 4800),
# max_sentences=hparams.get("cl_max_sentences", 128), endless=endless, num_workers=num_workers)
# self.cl_dl_iter = iter(self.cl_dataloader)
def __getitem__(self, index):
sample = super().__getitem__(index)
item = self._get_item(index)
max_frames = sample['mel'].shape[0]
if 'word' in item:
sample['words'] = item['word']
sample["ph_words"] = item["ph_gb_word"]
sample["word_tokens"] = torch.LongTensor(item["word_token"])
else:
sample['words'] = item['words']
sample["ph_words"] = " ".join(item["ph_words"])
sample["word_tokens"] = torch.LongTensor(item["word_tokens"])
sample["mel2word"] = torch.LongTensor(item.get("mel2word"))[:max_frames]
sample["ph2word"] = torch.LongTensor(item['ph2word'][:self.hparams['max_input_tokens']])
# SyntaSpeech related features
# sample['dgl_graph'] = item['dgl_graph']
# sample['edge_types'] = item['edge_types']
# BERT related features
# sample['bert_token'] = item['bert_token']
# sample['bert_input_ids'] = torch.LongTensor(item['bert_input_ids'])
# sample['bert_token2word'] = torch.LongTensor(item['bert_token2word'])
# sample['bert_attention_mask'] = torch.LongTensor(item['bert_attention_mask'])
# sample['bert_token_type_ids'] = torch.LongTensor(item['bert_token_type_ids'])
return sample
def collater(self, samples):
samples = [s for s in samples if s is not None]
batch = super().collater(samples)
ph_words = [s['ph_words'] for s in samples]
batch['ph_words'] = ph_words
word_tokens = collate_1d_or_2d([s['word_tokens'] for s in samples], 0)
batch['word_tokens'] = word_tokens
mel2word = collate_1d_or_2d([s['mel2word'] for s in samples], 0)
batch['mel2word'] = mel2word
ph2word = collate_1d_or_2d([s['ph2word'] for s in samples], 0)
batch['ph2word'] = ph2word
batch['words'] = [s['words'] for s in samples]
batch['word_lengths'] = torch.LongTensor([len(s['word_tokens']) for s in samples])
if self.hparams['use_word_input']: # always False
batch['txt_tokens'] = batch['word_tokens']
batch['txt_lengths'] = torch.LongTensor([s['word_tokens'].numel() for s in samples])
batch['mel2ph'] = batch['mel2word']
# SyntaSpeech
# graph_lst, etypes_lst = [], [] # new features for Graph-based SDP
# for s in samples:
# graph_lst.append(s['dgl_graph'])
# etypes_lst.append(s['edge_types'])
# batch.update({
# 'graph_lst': graph_lst,
# 'etypes_lst': etypes_lst,
# })
# BERT
# batch['bert_feats'] = {}
# batch['bert_feats']['bert_tokens'] = [s['bert_token'] for s in samples]
# bert_input_ids = collate_1d_or_2d([s['bert_input_ids'] for s in samples], 0)
# batch['bert_feats']['bert_input_ids'] = bert_input_ids
# bert_token2word = collate_1d_or_2d([s['bert_token2word'] for s in samples], 0)
# batch['bert_feats']['bert_token2word'] = bert_token2word
# bert_attention_mask = collate_1d_or_2d([s['bert_attention_mask'] for s in samples], 0)
# batch['bert_feats']['bert_attention_mask'] = bert_attention_mask
# bert_token_type_ids = collate_1d_or_2d([s['bert_token_type_ids'] for s in samples], 0)
# batch['bert_feats']['bert_token_type_ids'] = bert_token_type_ids
# BERT contrastive loss & mlm loss & electra loss
# if hparams.get("cl_ds_name") is None:
# batch['cl_feats'] = {}
# batch['cl_feats']['cl_input_ids'] = batch['bert_feats']['bert_input_ids'].unsqueeze(1).repeat([1,2,1])
# batch['cl_feats']['cl_token2word'] = batch['bert_feats']['bert_token2word'].unsqueeze(1).repeat([1,2,1])
# batch['cl_feats']['cl_attention_mask'] = batch['bert_feats']['bert_attention_mask'].unsqueeze(1).repeat([1,2,1])
# batch['cl_feats']['cl_token_type_ids'] = batch['bert_feats']['bert_token_type_ids'].unsqueeze(1).repeat([1,2,1])
# bs, _, t = batch['cl_feats']['cl_input_ids'].shape
# mlm_input_ids, mlm_labels = self.mask_tokens(batch['bert_feats']['bert_input_ids'].reshape([bs, t]))
# batch['cl_feats']["mlm_input_ids"] = mlm_input_ids.reshape([bs, t])
# batch['cl_feats']["mlm_labels"] = mlm_labels.reshape([bs, t])
# batch['cl_feats']["mlm_attention_mask"] = batch['bert_feats']['bert_attention_mask']
# elif hparams['cl_ds_name'] in ["wiki", "nli"]:
# try:
# cl_feats = self.cl_dl_iter.__next__()
# except:
# self.cl_dl_iter = iter(self.cl_dataloader)
# cl_feats = self.cl_dl_iter.__next__()
# batch['cl_feats'] = cl_feats
return batch
# def mask_tokens(self, inputs, special_tokens_mask=None):
# """
# Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
# """
# inputs = inputs.clone()
# labels = inputs.clone()
# # We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
# probability_matrix = torch.full(labels.shape, self.mlm_probability)
# if special_tokens_mask is None:
# special_tokens_mask = [
# self.tokenizer.get_special_tokens_mask(val, already_has_special_tokens=True) for val in labels.tolist()
# ]
# special_tokens_mask = torch.tensor(special_tokens_mask, dtype=torch.bool)
# else:
# special_tokens_mask = special_tokens_mask.bool()
# probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
# masked_indices = torch.bernoulli(probability_matrix).bool()
# labels[~masked_indices] = -100 # We only compute loss on masked tokens
# # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
# indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
# inputs[indices_replaced] = self.tokenizer.convert_tokens_to_ids(self.tokenizer.mask_token)
# # 10% of the time, we replace masked input tokens with random word
# indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
# random_words = torch.randint(len(self.tokenizer), labels.shape, dtype=torch.long)
# inputs[indices_random] = random_words[indices_random]
# # The rest of the time (10% of the time) we keep the masked input tokens unchanged
# return inputs, labels
|