File size: 26,085 Bytes
15ac91d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import os
import sys
import numpy as np
import argparse
import h5py
import time
import pickle
import matplotlib.pyplot as plt
import csv
from sklearn import metrics

from utilities import (create_folder, get_filename, d_prime)
import config


def load_statistics(statistics_path):
    statistics_dict = pickle.load(open(statistics_path, 'rb'))

    bal_map = np.array([statistics['average_precision'] for statistics in statistics_dict['bal']])    # (N, classes_num)
    bal_map = np.mean(bal_map, axis=-1)
    test_map = np.array([statistics['average_precision'] for statistics in statistics_dict['test']])    # (N, classes_num)
    test_map = np.mean(test_map, axis=-1)

    return bal_map, test_map


def crop_label(label):
    max_len = 16
    if len(label) <= max_len:
        return label
    else:
        words = label.split(' ')
        cropped_label = ''
        for w in words:
            if len(cropped_label + ' ' + w) > max_len:
                break
            else:
                cropped_label += ' {}'.format(w)
    return cropped_label


def add_comma(integer):
    """E.g., 1234567 -> 1,234,567
    """
    integer = int(integer)
    if integer >= 1000:
        return str(integer // 1000) + ',' + str(integer % 1000)
    else:
        return str(integer)


def plot_classwise_iteration_map(args):
    
    # Paths
    save_out_path = 'results/classwise_iteration_map.pdf'
    create_folder(os.path.dirname(save_out_path))

    # Load statistics
    statistics_dict = pickle.load(open('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_WavegramLogmelCnn_balanced_mixup_bs32.pkl', 'rb'))

    mAP_mat = np.array([e['average_precision'] for e in statistics_dict['test']])
    mAP_mat = mAP_mat[0 : 300, :]   # 300 * 2000 = 600k iterations
    sorted_indexes = np.argsort(config.full_samples_per_class)[::-1]

    fig, axs = plt.subplots(1, 3, figsize=(20, 5))
    ranges = [np.arange(0, 10), np.arange(250, 260), np.arange(517, 527)]
    axs[0].set_ylabel('AP')

    for col in range(0, 3):
        axs[col].set_ylim(0, 1.)
        axs[col].set_xlim(0, 301)
        axs[col].set_xlabel('Iterations')
        axs[col].set_ylabel('AP')
        axs[col].xaxis.set_ticks(np.arange(0, 301, 100))
        axs[col].xaxis.set_ticklabels(['0', '200k', '400k', '600k'])
        lines = []
        for _ix in ranges[col]:
            _label = crop_label(config.labels[sorted_indexes[_ix]]) + \
                ' ({})'.format(add_comma(config.full_samples_per_class[sorted_indexes[_ix]]))
            line, = axs[col].plot(mAP_mat[:, sorted_indexes[_ix]], label=_label)
            lines.append(line)
        box = axs[col].get_position()
        axs[col].set_position([box.x0, box.y0, box.width * 1., box.height])
        axs[col].legend(handles=lines, bbox_to_anchor=(1., 1.))
        axs[col].yaxis.grid(color='k', linestyle='solid', alpha=0.3, linewidth=0.3)
 
    plt.tight_layout(pad=4, w_pad=1, h_pad=1)
    plt.savefig(save_out_path)
    print(save_out_path)


def plot_six_figures(args):
    
    # Arguments & parameters
    classes_num = config.classes_num
    labels = config.labels
    max_plot_iteration = 540000
    iterations = np.arange(0, max_plot_iteration, 2000)

    # Paths
    class_labels_indices_path = os.path.join('metadata', 'class_labels_indices.csv')
    save_out_path = 'results/six_figures.pdf'
    create_folder(os.path.dirname(save_out_path))
    
    # Plot
    fig, ax = plt.subplots(2, 3, figsize=(14, 7))
    bal_alpha = 0.3
    test_alpha = 1.0
    linewidth = 1.

    # (a) Comparison of architectures
    if True:
        lines = []

        # Wavegram-Logmel-CNN
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_WavegramLogmelCnn_balanced_mixup_bs32.pkl')
        line, = ax[0, 0].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[0, 0].plot(test_map, label='Wavegram-Logmel-CNN', color='g', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        # Cnn14
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
        line, = ax[0, 0].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[0, 0].plot(test_map, label='CNN14', color='r', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        # MobileNetV1
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_MobileNetV1_balanced_mixup_bs32.pkl')
        line, = ax[0, 0].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[0, 0].plot(test_map, label='MobileNetV1', color='b', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        ax[0, 0].legend(handles=lines, loc=2)
        ax[0, 0].set_title('(a) Comparison of architectures')

    # (b) Comparison of training data and augmentation'
    if True:
        lines = []

        # Full data + balanced sampler + mixup
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
        line, = ax[0, 1].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[0, 1].plot(test_map, label='CNN14,bal,mixup (1.9m)', color='r', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        # Full data + balanced sampler + mixup in time domain
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_timedomain_bs32.pkl')
        line, = ax[0, 1].plot(bal_map, color='y', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[0, 1].plot(test_map, label='CNN14,bal,mixup-wav (1.9m)', color='y', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        # Full data + balanced sampler + no mixup
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_nomixup_bs32.pkl')
        line, = ax[0, 1].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[0, 1].plot(test_map, label='CNN14,bal,no-mixup (1.9m)', color='g', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        # Full data + uniform sampler + no mixup
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_nobalanced_nomixup_bs32.pkl')
        line, = ax[0, 1].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[0, 1].plot(test_map, label='CNN14,no-bal,no-mixup (1.9m)', color='b', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        # Balanced data + balanced sampler + mixup
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_balanced_train_Cnn14_balanced_mixup_bs32.pkl')
        line, = ax[0, 1].plot(bal_map, color='m', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[0, 1].plot(test_map, label='CNN14,bal,mixup (20k)', color='m', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        # Balanced data + balanced sampler + no mixup
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_balanced_train_Cnn14_balanced_nomixup_bs32.pkl')
        line, = ax[0, 1].plot(bal_map, color='k', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[0, 1].plot(test_map, label='CNN14,bal,no-mixup (20k)', color='k', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        ax[0, 1].legend(handles=lines, loc=2, fontsize=8)
        ax[0, 1].set_title('(b) Comparison of training data and augmentation')

    # (c) Comparison of embedding size
    if True:
        lines = []

        # Embedding size 2048
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
        line, = ax[0, 2].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[0, 2].plot(test_map, label='CNN14,emb=2048', color='r', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        # Embedding size 128
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_emb128_balanced_mixup_bs32.pkl')
        line, = ax[0, 2].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[0, 2].plot(test_map, label='CNN14,emb=128', color='g', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        # Embedding size 32
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_emb32_balanced_mixup_bs32.pkl')
        line, = ax[0, 2].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[0, 2].plot(test_map, label='CNN14,emb=32', color='b', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        ax[0, 2].legend(handles=lines, loc=2)
        ax[0, 2].set_title('(c) Comparison of embedding size')

    # (d) Comparison of amount of training data
    if True:
        lines = []

        # 100% of full training data
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
        line, = ax[1, 0].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[1, 0].plot(test_map, label='CNN14 (100% full)', color='r', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        # 80% of full training data
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_0.8full_train_Cnn14_balanced_mixup_bs32.pkl')
        line, = ax[1, 0].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[1, 0].plot(test_map, label='CNN14 (80% full)', color='b', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        # 50% of full training data
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_0.5full_train_Cnn14_balanced_mixup_bs32.pkl')
        line, = ax[1, 0].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[1, 0].plot(test_map, label='cnn14 (50% full)', color='g', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        ax[1, 0].legend(handles=lines, loc=2)
        ax[1, 0].set_title('(d) Comparison of amount of training data')

    # (e) Comparison of sampling rate
    if True:
        lines = []

        # Cnn14 + 32 kHz
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
        line, = ax[1, 1].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[1, 1].plot(test_map, label='CNN14,32kHz', color='r', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        # Cnn14 + 16 kHz
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_16k_balanced_mixup_bs32.pkl')
        line, = ax[1, 1].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[1, 1].plot(test_map, label='CNN14,16kHz', color='b', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        # Cnn14 + 8 kHz
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_8k_balanced_mixup_bs32.pkl')
        line, = ax[1, 1].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[1, 1].plot(test_map, label='CNN14,8kHz', color='g', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        ax[1, 1].legend(handles=lines, loc=2)
        ax[1, 1].set_title('(e) Comparison of sampling rate')

    # (f) Comparison of mel bins number
    if True:
        lines = []

        # Cnn14 + 128 mel bins
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel128_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
        line, = ax[1, 2].plot(bal_map, color='g', alpha=bal_alpha)
        line, = ax[1, 2].plot(test_map, label='CNN14,128-melbins', color='g', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        # Cnn14 + 64 mel bins
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
        line, = ax[1, 2].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth)
        line, = ax[1, 2].plot(test_map, label='CNN14,64-melbins', color='r', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        # Cnn14 + 32 mel bins
        (bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel32_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
        line, = ax[1, 2].plot(bal_map, color='b', alpha=bal_alpha)
        line, = ax[1, 2].plot(test_map, label='CNN14,32-melbins', color='b', alpha=test_alpha, linewidth=linewidth)
        lines.append(line)

        ax[1, 2].legend(handles=lines, loc=2)
        ax[1, 2].set_title('(f) Comparison of mel bins number')

    for i in range(2):
        for j in range(3):
            ax[i, j].set_ylim(0, 0.8)
            ax[i, j].set_xlim(0, len(iterations))
            ax[i, j].set_xlabel('Iterations')
            ax[i, j].set_ylabel('mAP')
            ax[i, j].xaxis.set_ticks(np.arange(0, len(iterations), 50))
            ax[i, j].xaxis.set_ticklabels(['0', '100k', '200k', '300k', '400k', '500k'])
            ax[i, j].yaxis.set_ticks(np.arange(0, 0.81, 0.05))
            ax[i, j].yaxis.set_ticklabels(['0', '', '0.1', '', '0.2', '', '0.3', 
                '', '0.4', '', '0.5', '', '0.6', '', '0.7', '', '0.8'])
            ax[i, j].yaxis.grid(color='k', linestyle='solid', alpha=0.3, linewidth=0.3)
            ax[i, j].xaxis.grid(color='k', linestyle='solid', alpha=0.3, linewidth=0.3)

    plt.tight_layout(0, 1, 0)
    plt.savefig(save_out_path)
    print('Save figure to {}'.format(save_out_path))


def plot_complexity_map(args):
    
    # Paths
    save_out_path = 'results/complexity_mAP.pdf'
    create_folder(os.path.dirname(save_out_path))

    plt.figure(figsize=(5, 5))
    fig, ax = plt.subplots(1, 1)

    model_types = np.array(['Cnn6', 'Cnn10', 'Cnn14', 'ResNet22', 'ResNet38', 'ResNet54', 
        'MobileNetV1', 'MobileNetV2', 'DaiNet', 'LeeNet', 'LeeNet18', 
        'Res1dNet30', 'Res1dNet44', 'Wavegram-CNN', 'Wavegram-\nLogmel-CNN'])
    flops = np.array([21.986, 28.166, 42.220, 30.081, 48.962, 54.563, 3.614, 2.810, 
        30.395, 4.741, 26.369, 32.688, 61.833, 44.234, 53.510])
    mAPs = np.array([0.343, 0.380, 0.431, 0.430, 0.434, 0.429, 0.389, 0.383, 0.295, 
        0.266, 0.336, 0.365, 0.355, 0.389, 0.439])

    sorted_indexes = np.sort(flops)
    ax.scatter(flops, mAPs)

    shift = [[-5.5, -0.004], [1, -0.004], [-1, -0.014], [-2, 0.006], [-7, 0.006], 
        [1, -0.01], [0.5, 0.004], [-1, -0.014], [1, -0.007], [0.8, -0.008], 
        [1, -0.007], [1, 0.002], [-6, -0.015], [1, -0.008], [0.8, 0]]

    for i, model_type in enumerate(model_types):
        ax.annotate(model_type, (flops[i] + shift[i][0], mAPs[i] + shift[i][1]))

    ax.plot(flops[[0, 1, 2]], mAPs[[0, 1, 2]])
    ax.plot(flops[[3, 4, 5]], mAPs[[3, 4, 5]])
    ax.plot(flops[[6, 7]], mAPs[[6, 7]])
    ax.plot(flops[[9, 10]], mAPs[[9, 10]])
    ax.plot(flops[[11, 12]], mAPs[[11, 12]])
    ax.plot(flops[[13, 14]], mAPs[[13, 14]])

    ax.set_xlim(0, 70)
    ax.set_ylim(0.2, 0.5)
    ax.set_xlabel('Multi-load_statisticss (million)', fontsize=15)
    ax.set_ylabel('mAP', fontsize=15)
    ax.tick_params(axis='x', labelsize=12)
    ax.tick_params(axis='y', labelsize=12)

    plt.tight_layout(0, 0, 0)

    plt.savefig(save_out_path)
    print('Write out figure to {}'.format(save_out_path))


def plot_long_fig(args):
    
    # Paths
    stats = pickle.load(open('paper_statistics/stats_for_long_fig.pkl', 'rb'))

    save_out_path = 'results/long_fig.pdf'
    create_folder(os.path.dirname(save_out_path))

    # Load meta
    N = len(config.labels)
    sorted_indexes = stats['sorted_indexes_for_plot']
    sorted_labels = np.array(config.labels)[sorted_indexes]
    audio_clips_per_class = stats['official_balanced_training_samples'] + stats['official_unbalanced_training_samples']
    audio_clips_per_class = audio_clips_per_class[sorted_indexes]

    # Prepare axes for plot
    (ax1a, ax2a, ax3a, ax4a, ax1b, ax2b, ax3b, ax4b) = prepare_plot_long_4_rows(sorted_labels)
 
    # plot the number of training samples
    ax1a.bar(np.arange(N), audio_clips_per_class, alpha=0.3)
    ax2a.bar(np.arange(N), audio_clips_per_class, alpha=0.3)
    ax3a.bar(np.arange(N), audio_clips_per_class, alpha=0.3)
    ax4a.bar(np.arange(N), audio_clips_per_class, alpha=0.3)
   
    # Load mAP of different systems
    """Average instance system of [1] with an mAP of 0.317.
    [1] Kong, Qiuqiang, Changsong Yu, Yong Xu, Turab Iqbal, Wenwu Wang, and 
    Mark D. Plumbley. "Weakly labelled audioset tagging with attention neural 
    networks." IEEE/ACM Transactions on Audio, Speech, and Language Processing 
    27, no. 11 (2019): 1791-1802."""
    maps_avg_instances = stats['averaging_instance_system_avg_9_probs_from_10000_to_50000_iterations']['eval']['average_precision']
    maps_avg_instances = maps_avg_instances[sorted_indexes]

    # PANNs Cnn14
    maps_panns_cnn14 = stats['panns_cnn14']['eval']['average_precision']
    maps_panns_cnn14 = maps_panns_cnn14[sorted_indexes]

    # PANNs MobileNetV1
    maps_panns_mobilenetv1 = stats['panns_mobilenetv1']['eval']['average_precision']
    maps_panns_mobilenetv1 = maps_panns_mobilenetv1[sorted_indexes]

    # PANNs Wavegram-Logmel-Cnn14
    maps_panns_wavegram_logmel_cnn14 = stats['panns_wavegram_logmel_cnn14']['eval']['average_precision']
    maps_panns_wavegram_logmel_cnn14 = maps_panns_wavegram_logmel_cnn14[sorted_indexes]

    # Plot mAPs
    _scatter_4_rows(maps_panns_wavegram_logmel_cnn14, ax1b, ax2b, ax3b, ax4b, s=5, c='g')
    _scatter_4_rows(maps_panns_cnn14, ax1b, ax2b, ax3b, ax4b, s=5, c='r')
    _scatter_4_rows(maps_panns_mobilenetv1, ax1b, ax2b, ax3b, ax4b, s=5, c='b')
    _scatter_4_rows(maps_avg_instances, ax1b, ax2b, ax3b, ax4b, s=5, c='k')
    
    linewidth = 0.7
    line0te = _plot_4_rows(maps_panns_wavegram_logmel_cnn14, ax1b, ax2b, ax3b, ax4b, 
        c='g', linewidth=linewidth, label='AP with Wavegram-Logmel-CNN')
    line1te = _plot_4_rows(maps_panns_cnn14, ax1b, ax2b, ax3b, ax4b, c='r', 
        linewidth=linewidth, label='AP with CNN14')
    line2te = _plot_4_rows(maps_panns_mobilenetv1, ax1b, ax2b, ax3b, ax4b, c='b', 
        linewidth=linewidth, label='AP with MobileNetV1')
    line3te = _plot_4_rows(maps_avg_instances, ax1b, ax2b, ax3b, ax4b, c='k', 
        linewidth=linewidth, label='AP with averaging instances (baseline)')

    # Plot label quality
    label_quality = stats['label_quality']
    sorted_label_quality = np.array(label_quality)[sorted_indexes]
    for k in range(len(sorted_label_quality)):
        if sorted_label_quality[k] and sorted_label_quality[k] == 1:
            sorted_label_quality[k] = 0.99
    
    ax1b.scatter(np.arange(N)[sorted_label_quality != None], 
        sorted_label_quality[sorted_label_quality != None], s=12, c='r', linewidth=0.8, marker='+')
    ax2b.scatter(np.arange(N)[sorted_label_quality != None], 
        sorted_label_quality[sorted_label_quality != None], s=12, c='r', linewidth=0.8, marker='+')
    ax3b.scatter(np.arange(N)[sorted_label_quality != None], 
        sorted_label_quality[sorted_label_quality != None], s=12, c='r', linewidth=0.8, marker='+')
    line_label_quality = ax4b.scatter(np.arange(N)[sorted_label_quality != None], 
        sorted_label_quality[sorted_label_quality != None], s=12, c='r', linewidth=0.8, marker='+', label='Label quality')
    ax1b.scatter(np.arange(N)[sorted_label_quality == None], 
        0.5 * np.ones(len(np.arange(N)[sorted_label_quality == None])), s=12, c='r', linewidth=0.8, marker='_')
    ax2b.scatter(np.arange(N)[sorted_label_quality == None], 
        0.5 * np.ones(len(np.arange(N)[sorted_label_quality == None])), s=12, c='r', linewidth=0.8, marker='_')
    ax3b.scatter(np.arange(N)[sorted_label_quality == None], 
        0.5 * np.ones(len(np.arange(N)[sorted_label_quality == None])), s=12, c='r', linewidth=0.8, marker='_')
    ax4b.scatter(np.arange(N)[sorted_label_quality == None], 
        0.5 * np.ones(len(np.arange(N)[sorted_label_quality == None])), s=12, c='r', linewidth=0.8, marker='_')
    
    plt.legend(handles=[line0te, line1te, line2te, line3te, line_label_quality], fontsize=6, loc=1)
    plt.tight_layout(0, 0, 0)
    plt.savefig(save_out_path)
    print('Save fig to {}'.format(save_out_path))


def prepare_plot_long_4_rows(sorted_lbs):
    N = len(sorted_lbs)

    f,(ax1a, ax2a, ax3a, ax4a) = plt.subplots(4, 1, sharey=False, facecolor='w', figsize=(10, 10.5))

    fontsize = 5

    K = 132
    ax1a.set_xlim(0, K)
    ax2a.set_xlim(K, 2 * K)
    ax3a.set_xlim(2 * K, 3 * K)
    ax4a.set_xlim(3 * K, N)
    
    truncated_sorted_lbs = []
    for lb in sorted_lbs:
        lb = lb[0 : 25]
        words = lb.split(' ')
        if len(words[-1]) < 3:
            lb = ' '.join(words[0:-1])
        truncated_sorted_lbs.append(lb)
  
    ax1a.grid(which='major', axis='x', linestyle='-', alpha=0.3)
    ax2a.grid(which='major', axis='x', linestyle='-', alpha=0.3)
    ax3a.grid(which='major', axis='x', linestyle='-', alpha=0.3)
    ax4a.grid(which='major', axis='x', linestyle='-', alpha=0.3)
    
    ax1a.set_yscale('log')
    ax2a.set_yscale('log')
    ax3a.set_yscale('log')
    ax4a.set_yscale('log')
    
    ax1b = ax1a.twinx()
    ax2b = ax2a.twinx()
    ax3b = ax3a.twinx()
    ax4b = ax4a.twinx()
    ax1b.set_ylim(0., 1.)
    ax2b.set_ylim(0., 1.)
    ax3b.set_ylim(0., 1.)
    ax4b.set_ylim(0., 1.)
    ax1b.set_ylabel('Average precision')
    ax2b.set_ylabel('Average precision')
    ax3b.set_ylabel('Average precision')
    ax4b.set_ylabel('Average precision')
    
    ax1b.yaxis.grid(color='grey', linestyle='--', alpha=0.5)
    ax2b.yaxis.grid(color='grey', linestyle='--', alpha=0.5)
    ax3b.yaxis.grid(color='grey', linestyle='--', alpha=0.5)
    ax4b.yaxis.grid(color='grey', linestyle='--', alpha=0.5)
    
    ax1a.xaxis.set_ticks(np.arange(K))
    ax1a.xaxis.set_ticklabels(truncated_sorted_lbs[0:K], rotation=90, fontsize=fontsize)
    ax1a.xaxis.tick_bottom()
    ax1a.set_ylabel("Number of audio clips")
    
    ax2a.xaxis.set_ticks(np.arange(K, 2*K))
    ax2a.xaxis.set_ticklabels(truncated_sorted_lbs[K:2*K], rotation=90, fontsize=fontsize)
    ax2a.xaxis.tick_bottom()
    ax2a.set_ylabel("Number of audio clips")
    
    ax3a.xaxis.set_ticks(np.arange(2*K, 3*K))
    ax3a.xaxis.set_ticklabels(truncated_sorted_lbs[2*K:3*K], rotation=90, fontsize=fontsize)
    ax3a.xaxis.tick_bottom()
    ax3a.set_ylabel("Number of audio clips")
    
    ax4a.xaxis.set_ticks(np.arange(3*K, N))
    ax4a.xaxis.set_ticklabels(truncated_sorted_lbs[3*K:], rotation=90, fontsize=fontsize)
    ax4a.xaxis.tick_bottom()
    ax4a.set_ylabel("Number of audio clips")
    
    ax1a.spines['right'].set_visible(False)
    ax1b.spines['right'].set_visible(False)
    ax2a.spines['left'].set_visible(False)
    ax2b.spines['left'].set_visible(False)
    ax2a.spines['right'].set_visible(False)
    ax2b.spines['right'].set_visible(False)
    ax3a.spines['left'].set_visible(False)
    ax3b.spines['left'].set_visible(False)
    ax3a.spines['right'].set_visible(False)
    ax3b.spines['right'].set_visible(False)
    ax4a.spines['left'].set_visible(False)
    ax4b.spines['left'].set_visible(False)
    
    plt.subplots_adjust(hspace = 0.8)
    
    return ax1a, ax2a, ax3a, ax4a, ax1b, ax2b, ax3b, ax4b


def _scatter_4_rows(x, ax, ax2, ax3, ax4, s, c, marker='.', alpha=1.):
    N = len(x)
    ax.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha)
    ax2.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha)
    ax3.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha)
    ax4.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha)


def _plot_4_rows(x, ax, ax2, ax3, ax4, c, linewidth=1.0, alpha=1.0, label=""):
    N = len(x)
    ax.plot(x, c=c, linewidth=linewidth, alpha=alpha)
    ax2.plot(x, c=c, linewidth=linewidth, alpha=alpha)
    ax3.plot(x, c=c, linewidth=linewidth, alpha=alpha)
    line, = ax4.plot(x, c=c, linewidth=linewidth, alpha=alpha, label=label)
    return line


if __name__ == '__main__':

    parser = argparse.ArgumentParser(description='')
    subparsers = parser.add_subparsers(dest='mode')
    
    parser_classwise_iteration_map = subparsers.add_parser('plot_classwise_iteration_map')
    parser_six_figures = subparsers.add_parser('plot_six_figures')
    parser_complexity_map = subparsers.add_parser('plot_complexity_map')
    parser_long_fig = subparsers.add_parser('plot_long_fig')
    
    args = parser.parse_args()

    if args.mode == 'plot_classwise_iteration_map':
        plot_classwise_iteration_map(args)

    elif args.mode == 'plot_six_figures':
        plot_six_figures(args)
    
    elif args.mode == 'plot_complexity_map':
        plot_complexity_map(args)

    elif args.mode == 'plot_long_fig':
        plot_long_fig(args)

    else:
    	raise Exception('Incorrect argument!')