Spaces:
Build error
Build error
File size: 26,085 Bytes
15ac91d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 |
import os
import sys
import numpy as np
import argparse
import h5py
import time
import pickle
import matplotlib.pyplot as plt
import csv
from sklearn import metrics
from utilities import (create_folder, get_filename, d_prime)
import config
def load_statistics(statistics_path):
statistics_dict = pickle.load(open(statistics_path, 'rb'))
bal_map = np.array([statistics['average_precision'] for statistics in statistics_dict['bal']]) # (N, classes_num)
bal_map = np.mean(bal_map, axis=-1)
test_map = np.array([statistics['average_precision'] for statistics in statistics_dict['test']]) # (N, classes_num)
test_map = np.mean(test_map, axis=-1)
return bal_map, test_map
def crop_label(label):
max_len = 16
if len(label) <= max_len:
return label
else:
words = label.split(' ')
cropped_label = ''
for w in words:
if len(cropped_label + ' ' + w) > max_len:
break
else:
cropped_label += ' {}'.format(w)
return cropped_label
def add_comma(integer):
"""E.g., 1234567 -> 1,234,567
"""
integer = int(integer)
if integer >= 1000:
return str(integer // 1000) + ',' + str(integer % 1000)
else:
return str(integer)
def plot_classwise_iteration_map(args):
# Paths
save_out_path = 'results/classwise_iteration_map.pdf'
create_folder(os.path.dirname(save_out_path))
# Load statistics
statistics_dict = pickle.load(open('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_WavegramLogmelCnn_balanced_mixup_bs32.pkl', 'rb'))
mAP_mat = np.array([e['average_precision'] for e in statistics_dict['test']])
mAP_mat = mAP_mat[0 : 300, :] # 300 * 2000 = 600k iterations
sorted_indexes = np.argsort(config.full_samples_per_class)[::-1]
fig, axs = plt.subplots(1, 3, figsize=(20, 5))
ranges = [np.arange(0, 10), np.arange(250, 260), np.arange(517, 527)]
axs[0].set_ylabel('AP')
for col in range(0, 3):
axs[col].set_ylim(0, 1.)
axs[col].set_xlim(0, 301)
axs[col].set_xlabel('Iterations')
axs[col].set_ylabel('AP')
axs[col].xaxis.set_ticks(np.arange(0, 301, 100))
axs[col].xaxis.set_ticklabels(['0', '200k', '400k', '600k'])
lines = []
for _ix in ranges[col]:
_label = crop_label(config.labels[sorted_indexes[_ix]]) + \
' ({})'.format(add_comma(config.full_samples_per_class[sorted_indexes[_ix]]))
line, = axs[col].plot(mAP_mat[:, sorted_indexes[_ix]], label=_label)
lines.append(line)
box = axs[col].get_position()
axs[col].set_position([box.x0, box.y0, box.width * 1., box.height])
axs[col].legend(handles=lines, bbox_to_anchor=(1., 1.))
axs[col].yaxis.grid(color='k', linestyle='solid', alpha=0.3, linewidth=0.3)
plt.tight_layout(pad=4, w_pad=1, h_pad=1)
plt.savefig(save_out_path)
print(save_out_path)
def plot_six_figures(args):
# Arguments & parameters
classes_num = config.classes_num
labels = config.labels
max_plot_iteration = 540000
iterations = np.arange(0, max_plot_iteration, 2000)
# Paths
class_labels_indices_path = os.path.join('metadata', 'class_labels_indices.csv')
save_out_path = 'results/six_figures.pdf'
create_folder(os.path.dirname(save_out_path))
# Plot
fig, ax = plt.subplots(2, 3, figsize=(14, 7))
bal_alpha = 0.3
test_alpha = 1.0
linewidth = 1.
# (a) Comparison of architectures
if True:
lines = []
# Wavegram-Logmel-CNN
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_WavegramLogmelCnn_balanced_mixup_bs32.pkl')
line, = ax[0, 0].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth)
line, = ax[0, 0].plot(test_map, label='Wavegram-Logmel-CNN', color='g', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
# Cnn14
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
line, = ax[0, 0].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth)
line, = ax[0, 0].plot(test_map, label='CNN14', color='r', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
# MobileNetV1
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_MobileNetV1_balanced_mixup_bs32.pkl')
line, = ax[0, 0].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth)
line, = ax[0, 0].plot(test_map, label='MobileNetV1', color='b', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
ax[0, 0].legend(handles=lines, loc=2)
ax[0, 0].set_title('(a) Comparison of architectures')
# (b) Comparison of training data and augmentation'
if True:
lines = []
# Full data + balanced sampler + mixup
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
line, = ax[0, 1].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth)
line, = ax[0, 1].plot(test_map, label='CNN14,bal,mixup (1.9m)', color='r', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
# Full data + balanced sampler + mixup in time domain
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_timedomain_bs32.pkl')
line, = ax[0, 1].plot(bal_map, color='y', alpha=bal_alpha, linewidth=linewidth)
line, = ax[0, 1].plot(test_map, label='CNN14,bal,mixup-wav (1.9m)', color='y', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
# Full data + balanced sampler + no mixup
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_nomixup_bs32.pkl')
line, = ax[0, 1].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth)
line, = ax[0, 1].plot(test_map, label='CNN14,bal,no-mixup (1.9m)', color='g', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
# Full data + uniform sampler + no mixup
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_nobalanced_nomixup_bs32.pkl')
line, = ax[0, 1].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth)
line, = ax[0, 1].plot(test_map, label='CNN14,no-bal,no-mixup (1.9m)', color='b', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
# Balanced data + balanced sampler + mixup
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_balanced_train_Cnn14_balanced_mixup_bs32.pkl')
line, = ax[0, 1].plot(bal_map, color='m', alpha=bal_alpha, linewidth=linewidth)
line, = ax[0, 1].plot(test_map, label='CNN14,bal,mixup (20k)', color='m', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
# Balanced data + balanced sampler + no mixup
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_balanced_train_Cnn14_balanced_nomixup_bs32.pkl')
line, = ax[0, 1].plot(bal_map, color='k', alpha=bal_alpha, linewidth=linewidth)
line, = ax[0, 1].plot(test_map, label='CNN14,bal,no-mixup (20k)', color='k', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
ax[0, 1].legend(handles=lines, loc=2, fontsize=8)
ax[0, 1].set_title('(b) Comparison of training data and augmentation')
# (c) Comparison of embedding size
if True:
lines = []
# Embedding size 2048
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
line, = ax[0, 2].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth)
line, = ax[0, 2].plot(test_map, label='CNN14,emb=2048', color='r', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
# Embedding size 128
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_emb128_balanced_mixup_bs32.pkl')
line, = ax[0, 2].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth)
line, = ax[0, 2].plot(test_map, label='CNN14,emb=128', color='g', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
# Embedding size 32
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_emb32_balanced_mixup_bs32.pkl')
line, = ax[0, 2].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth)
line, = ax[0, 2].plot(test_map, label='CNN14,emb=32', color='b', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
ax[0, 2].legend(handles=lines, loc=2)
ax[0, 2].set_title('(c) Comparison of embedding size')
# (d) Comparison of amount of training data
if True:
lines = []
# 100% of full training data
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
line, = ax[1, 0].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth)
line, = ax[1, 0].plot(test_map, label='CNN14 (100% full)', color='r', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
# 80% of full training data
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_0.8full_train_Cnn14_balanced_mixup_bs32.pkl')
line, = ax[1, 0].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth)
line, = ax[1, 0].plot(test_map, label='CNN14 (80% full)', color='b', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
# 50% of full training data
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_0.5full_train_Cnn14_balanced_mixup_bs32.pkl')
line, = ax[1, 0].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth)
line, = ax[1, 0].plot(test_map, label='cnn14 (50% full)', color='g', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
ax[1, 0].legend(handles=lines, loc=2)
ax[1, 0].set_title('(d) Comparison of amount of training data')
# (e) Comparison of sampling rate
if True:
lines = []
# Cnn14 + 32 kHz
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
line, = ax[1, 1].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth)
line, = ax[1, 1].plot(test_map, label='CNN14,32kHz', color='r', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
# Cnn14 + 16 kHz
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_16k_balanced_mixup_bs32.pkl')
line, = ax[1, 1].plot(bal_map, color='b', alpha=bal_alpha, linewidth=linewidth)
line, = ax[1, 1].plot(test_map, label='CNN14,16kHz', color='b', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
# Cnn14 + 8 kHz
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_8k_balanced_mixup_bs32.pkl')
line, = ax[1, 1].plot(bal_map, color='g', alpha=bal_alpha, linewidth=linewidth)
line, = ax[1, 1].plot(test_map, label='CNN14,8kHz', color='g', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
ax[1, 1].legend(handles=lines, loc=2)
ax[1, 1].set_title('(e) Comparison of sampling rate')
# (f) Comparison of mel bins number
if True:
lines = []
# Cnn14 + 128 mel bins
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel128_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
line, = ax[1, 2].plot(bal_map, color='g', alpha=bal_alpha)
line, = ax[1, 2].plot(test_map, label='CNN14,128-melbins', color='g', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
# Cnn14 + 64 mel bins
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel64_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
line, = ax[1, 2].plot(bal_map, color='r', alpha=bal_alpha, linewidth=linewidth)
line, = ax[1, 2].plot(test_map, label='CNN14,64-melbins', color='r', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
# Cnn14 + 32 mel bins
(bal_map, test_map) = load_statistics('paper_statistics/statistics_sr32000_window1024_hop320_mel32_fmin50_fmax14000_full_train_Cnn14_balanced_mixup_bs32.pkl')
line, = ax[1, 2].plot(bal_map, color='b', alpha=bal_alpha)
line, = ax[1, 2].plot(test_map, label='CNN14,32-melbins', color='b', alpha=test_alpha, linewidth=linewidth)
lines.append(line)
ax[1, 2].legend(handles=lines, loc=2)
ax[1, 2].set_title('(f) Comparison of mel bins number')
for i in range(2):
for j in range(3):
ax[i, j].set_ylim(0, 0.8)
ax[i, j].set_xlim(0, len(iterations))
ax[i, j].set_xlabel('Iterations')
ax[i, j].set_ylabel('mAP')
ax[i, j].xaxis.set_ticks(np.arange(0, len(iterations), 50))
ax[i, j].xaxis.set_ticklabels(['0', '100k', '200k', '300k', '400k', '500k'])
ax[i, j].yaxis.set_ticks(np.arange(0, 0.81, 0.05))
ax[i, j].yaxis.set_ticklabels(['0', '', '0.1', '', '0.2', '', '0.3',
'', '0.4', '', '0.5', '', '0.6', '', '0.7', '', '0.8'])
ax[i, j].yaxis.grid(color='k', linestyle='solid', alpha=0.3, linewidth=0.3)
ax[i, j].xaxis.grid(color='k', linestyle='solid', alpha=0.3, linewidth=0.3)
plt.tight_layout(0, 1, 0)
plt.savefig(save_out_path)
print('Save figure to {}'.format(save_out_path))
def plot_complexity_map(args):
# Paths
save_out_path = 'results/complexity_mAP.pdf'
create_folder(os.path.dirname(save_out_path))
plt.figure(figsize=(5, 5))
fig, ax = plt.subplots(1, 1)
model_types = np.array(['Cnn6', 'Cnn10', 'Cnn14', 'ResNet22', 'ResNet38', 'ResNet54',
'MobileNetV1', 'MobileNetV2', 'DaiNet', 'LeeNet', 'LeeNet18',
'Res1dNet30', 'Res1dNet44', 'Wavegram-CNN', 'Wavegram-\nLogmel-CNN'])
flops = np.array([21.986, 28.166, 42.220, 30.081, 48.962, 54.563, 3.614, 2.810,
30.395, 4.741, 26.369, 32.688, 61.833, 44.234, 53.510])
mAPs = np.array([0.343, 0.380, 0.431, 0.430, 0.434, 0.429, 0.389, 0.383, 0.295,
0.266, 0.336, 0.365, 0.355, 0.389, 0.439])
sorted_indexes = np.sort(flops)
ax.scatter(flops, mAPs)
shift = [[-5.5, -0.004], [1, -0.004], [-1, -0.014], [-2, 0.006], [-7, 0.006],
[1, -0.01], [0.5, 0.004], [-1, -0.014], [1, -0.007], [0.8, -0.008],
[1, -0.007], [1, 0.002], [-6, -0.015], [1, -0.008], [0.8, 0]]
for i, model_type in enumerate(model_types):
ax.annotate(model_type, (flops[i] + shift[i][0], mAPs[i] + shift[i][1]))
ax.plot(flops[[0, 1, 2]], mAPs[[0, 1, 2]])
ax.plot(flops[[3, 4, 5]], mAPs[[3, 4, 5]])
ax.plot(flops[[6, 7]], mAPs[[6, 7]])
ax.plot(flops[[9, 10]], mAPs[[9, 10]])
ax.plot(flops[[11, 12]], mAPs[[11, 12]])
ax.plot(flops[[13, 14]], mAPs[[13, 14]])
ax.set_xlim(0, 70)
ax.set_ylim(0.2, 0.5)
ax.set_xlabel('Multi-load_statisticss (million)', fontsize=15)
ax.set_ylabel('mAP', fontsize=15)
ax.tick_params(axis='x', labelsize=12)
ax.tick_params(axis='y', labelsize=12)
plt.tight_layout(0, 0, 0)
plt.savefig(save_out_path)
print('Write out figure to {}'.format(save_out_path))
def plot_long_fig(args):
# Paths
stats = pickle.load(open('paper_statistics/stats_for_long_fig.pkl', 'rb'))
save_out_path = 'results/long_fig.pdf'
create_folder(os.path.dirname(save_out_path))
# Load meta
N = len(config.labels)
sorted_indexes = stats['sorted_indexes_for_plot']
sorted_labels = np.array(config.labels)[sorted_indexes]
audio_clips_per_class = stats['official_balanced_training_samples'] + stats['official_unbalanced_training_samples']
audio_clips_per_class = audio_clips_per_class[sorted_indexes]
# Prepare axes for plot
(ax1a, ax2a, ax3a, ax4a, ax1b, ax2b, ax3b, ax4b) = prepare_plot_long_4_rows(sorted_labels)
# plot the number of training samples
ax1a.bar(np.arange(N), audio_clips_per_class, alpha=0.3)
ax2a.bar(np.arange(N), audio_clips_per_class, alpha=0.3)
ax3a.bar(np.arange(N), audio_clips_per_class, alpha=0.3)
ax4a.bar(np.arange(N), audio_clips_per_class, alpha=0.3)
# Load mAP of different systems
"""Average instance system of [1] with an mAP of 0.317.
[1] Kong, Qiuqiang, Changsong Yu, Yong Xu, Turab Iqbal, Wenwu Wang, and
Mark D. Plumbley. "Weakly labelled audioset tagging with attention neural
networks." IEEE/ACM Transactions on Audio, Speech, and Language Processing
27, no. 11 (2019): 1791-1802."""
maps_avg_instances = stats['averaging_instance_system_avg_9_probs_from_10000_to_50000_iterations']['eval']['average_precision']
maps_avg_instances = maps_avg_instances[sorted_indexes]
# PANNs Cnn14
maps_panns_cnn14 = stats['panns_cnn14']['eval']['average_precision']
maps_panns_cnn14 = maps_panns_cnn14[sorted_indexes]
# PANNs MobileNetV1
maps_panns_mobilenetv1 = stats['panns_mobilenetv1']['eval']['average_precision']
maps_panns_mobilenetv1 = maps_panns_mobilenetv1[sorted_indexes]
# PANNs Wavegram-Logmel-Cnn14
maps_panns_wavegram_logmel_cnn14 = stats['panns_wavegram_logmel_cnn14']['eval']['average_precision']
maps_panns_wavegram_logmel_cnn14 = maps_panns_wavegram_logmel_cnn14[sorted_indexes]
# Plot mAPs
_scatter_4_rows(maps_panns_wavegram_logmel_cnn14, ax1b, ax2b, ax3b, ax4b, s=5, c='g')
_scatter_4_rows(maps_panns_cnn14, ax1b, ax2b, ax3b, ax4b, s=5, c='r')
_scatter_4_rows(maps_panns_mobilenetv1, ax1b, ax2b, ax3b, ax4b, s=5, c='b')
_scatter_4_rows(maps_avg_instances, ax1b, ax2b, ax3b, ax4b, s=5, c='k')
linewidth = 0.7
line0te = _plot_4_rows(maps_panns_wavegram_logmel_cnn14, ax1b, ax2b, ax3b, ax4b,
c='g', linewidth=linewidth, label='AP with Wavegram-Logmel-CNN')
line1te = _plot_4_rows(maps_panns_cnn14, ax1b, ax2b, ax3b, ax4b, c='r',
linewidth=linewidth, label='AP with CNN14')
line2te = _plot_4_rows(maps_panns_mobilenetv1, ax1b, ax2b, ax3b, ax4b, c='b',
linewidth=linewidth, label='AP with MobileNetV1')
line3te = _plot_4_rows(maps_avg_instances, ax1b, ax2b, ax3b, ax4b, c='k',
linewidth=linewidth, label='AP with averaging instances (baseline)')
# Plot label quality
label_quality = stats['label_quality']
sorted_label_quality = np.array(label_quality)[sorted_indexes]
for k in range(len(sorted_label_quality)):
if sorted_label_quality[k] and sorted_label_quality[k] == 1:
sorted_label_quality[k] = 0.99
ax1b.scatter(np.arange(N)[sorted_label_quality != None],
sorted_label_quality[sorted_label_quality != None], s=12, c='r', linewidth=0.8, marker='+')
ax2b.scatter(np.arange(N)[sorted_label_quality != None],
sorted_label_quality[sorted_label_quality != None], s=12, c='r', linewidth=0.8, marker='+')
ax3b.scatter(np.arange(N)[sorted_label_quality != None],
sorted_label_quality[sorted_label_quality != None], s=12, c='r', linewidth=0.8, marker='+')
line_label_quality = ax4b.scatter(np.arange(N)[sorted_label_quality != None],
sorted_label_quality[sorted_label_quality != None], s=12, c='r', linewidth=0.8, marker='+', label='Label quality')
ax1b.scatter(np.arange(N)[sorted_label_quality == None],
0.5 * np.ones(len(np.arange(N)[sorted_label_quality == None])), s=12, c='r', linewidth=0.8, marker='_')
ax2b.scatter(np.arange(N)[sorted_label_quality == None],
0.5 * np.ones(len(np.arange(N)[sorted_label_quality == None])), s=12, c='r', linewidth=0.8, marker='_')
ax3b.scatter(np.arange(N)[sorted_label_quality == None],
0.5 * np.ones(len(np.arange(N)[sorted_label_quality == None])), s=12, c='r', linewidth=0.8, marker='_')
ax4b.scatter(np.arange(N)[sorted_label_quality == None],
0.5 * np.ones(len(np.arange(N)[sorted_label_quality == None])), s=12, c='r', linewidth=0.8, marker='_')
plt.legend(handles=[line0te, line1te, line2te, line3te, line_label_quality], fontsize=6, loc=1)
plt.tight_layout(0, 0, 0)
plt.savefig(save_out_path)
print('Save fig to {}'.format(save_out_path))
def prepare_plot_long_4_rows(sorted_lbs):
N = len(sorted_lbs)
f,(ax1a, ax2a, ax3a, ax4a) = plt.subplots(4, 1, sharey=False, facecolor='w', figsize=(10, 10.5))
fontsize = 5
K = 132
ax1a.set_xlim(0, K)
ax2a.set_xlim(K, 2 * K)
ax3a.set_xlim(2 * K, 3 * K)
ax4a.set_xlim(3 * K, N)
truncated_sorted_lbs = []
for lb in sorted_lbs:
lb = lb[0 : 25]
words = lb.split(' ')
if len(words[-1]) < 3:
lb = ' '.join(words[0:-1])
truncated_sorted_lbs.append(lb)
ax1a.grid(which='major', axis='x', linestyle='-', alpha=0.3)
ax2a.grid(which='major', axis='x', linestyle='-', alpha=0.3)
ax3a.grid(which='major', axis='x', linestyle='-', alpha=0.3)
ax4a.grid(which='major', axis='x', linestyle='-', alpha=0.3)
ax1a.set_yscale('log')
ax2a.set_yscale('log')
ax3a.set_yscale('log')
ax4a.set_yscale('log')
ax1b = ax1a.twinx()
ax2b = ax2a.twinx()
ax3b = ax3a.twinx()
ax4b = ax4a.twinx()
ax1b.set_ylim(0., 1.)
ax2b.set_ylim(0., 1.)
ax3b.set_ylim(0., 1.)
ax4b.set_ylim(0., 1.)
ax1b.set_ylabel('Average precision')
ax2b.set_ylabel('Average precision')
ax3b.set_ylabel('Average precision')
ax4b.set_ylabel('Average precision')
ax1b.yaxis.grid(color='grey', linestyle='--', alpha=0.5)
ax2b.yaxis.grid(color='grey', linestyle='--', alpha=0.5)
ax3b.yaxis.grid(color='grey', linestyle='--', alpha=0.5)
ax4b.yaxis.grid(color='grey', linestyle='--', alpha=0.5)
ax1a.xaxis.set_ticks(np.arange(K))
ax1a.xaxis.set_ticklabels(truncated_sorted_lbs[0:K], rotation=90, fontsize=fontsize)
ax1a.xaxis.tick_bottom()
ax1a.set_ylabel("Number of audio clips")
ax2a.xaxis.set_ticks(np.arange(K, 2*K))
ax2a.xaxis.set_ticklabels(truncated_sorted_lbs[K:2*K], rotation=90, fontsize=fontsize)
ax2a.xaxis.tick_bottom()
ax2a.set_ylabel("Number of audio clips")
ax3a.xaxis.set_ticks(np.arange(2*K, 3*K))
ax3a.xaxis.set_ticklabels(truncated_sorted_lbs[2*K:3*K], rotation=90, fontsize=fontsize)
ax3a.xaxis.tick_bottom()
ax3a.set_ylabel("Number of audio clips")
ax4a.xaxis.set_ticks(np.arange(3*K, N))
ax4a.xaxis.set_ticklabels(truncated_sorted_lbs[3*K:], rotation=90, fontsize=fontsize)
ax4a.xaxis.tick_bottom()
ax4a.set_ylabel("Number of audio clips")
ax1a.spines['right'].set_visible(False)
ax1b.spines['right'].set_visible(False)
ax2a.spines['left'].set_visible(False)
ax2b.spines['left'].set_visible(False)
ax2a.spines['right'].set_visible(False)
ax2b.spines['right'].set_visible(False)
ax3a.spines['left'].set_visible(False)
ax3b.spines['left'].set_visible(False)
ax3a.spines['right'].set_visible(False)
ax3b.spines['right'].set_visible(False)
ax4a.spines['left'].set_visible(False)
ax4b.spines['left'].set_visible(False)
plt.subplots_adjust(hspace = 0.8)
return ax1a, ax2a, ax3a, ax4a, ax1b, ax2b, ax3b, ax4b
def _scatter_4_rows(x, ax, ax2, ax3, ax4, s, c, marker='.', alpha=1.):
N = len(x)
ax.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha)
ax2.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha)
ax3.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha)
ax4.scatter(np.arange(N), x, s=s, c=c, marker=marker, alpha=alpha)
def _plot_4_rows(x, ax, ax2, ax3, ax4, c, linewidth=1.0, alpha=1.0, label=""):
N = len(x)
ax.plot(x, c=c, linewidth=linewidth, alpha=alpha)
ax2.plot(x, c=c, linewidth=linewidth, alpha=alpha)
ax3.plot(x, c=c, linewidth=linewidth, alpha=alpha)
line, = ax4.plot(x, c=c, linewidth=linewidth, alpha=alpha, label=label)
return line
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
subparsers = parser.add_subparsers(dest='mode')
parser_classwise_iteration_map = subparsers.add_parser('plot_classwise_iteration_map')
parser_six_figures = subparsers.add_parser('plot_six_figures')
parser_complexity_map = subparsers.add_parser('plot_complexity_map')
parser_long_fig = subparsers.add_parser('plot_long_fig')
args = parser.parse_args()
if args.mode == 'plot_classwise_iteration_map':
plot_classwise_iteration_map(args)
elif args.mode == 'plot_six_figures':
plot_six_figures(args)
elif args.mode == 'plot_complexity_map':
plot_complexity_map(args)
elif args.mode == 'plot_long_fig':
plot_long_fig(args)
else:
raise Exception('Incorrect argument!') |