Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2022 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
# Adapted from https://github.com/jik876/hifi-gan under the MIT license. | |
# LICENSE is in incl_licenses directory. | |
import warnings | |
warnings.simplefilter(action='ignore', category=FutureWarning) | |
import itertools | |
import os | |
import time | |
import argparse | |
import json | |
import torch | |
import torch.nn.functional as F | |
from torch.utils.tensorboard import SummaryWriter | |
from torch.utils.data import DistributedSampler, DataLoader | |
import torch.multiprocessing as mp | |
from torch.distributed import init_process_group | |
from torch.nn.parallel import DistributedDataParallel | |
from env import AttrDict, build_env | |
from meldataset import MelDataset, mel_spectrogram, get_dataset_filelist, MAX_WAV_VALUE | |
from models import BigVGAN, MultiPeriodDiscriminator, MultiResolutionDiscriminator,\ | |
feature_loss, generator_loss, discriminator_loss | |
from utils import plot_spectrogram, plot_spectrogram_clipped, scan_checkpoint, load_checkpoint, save_checkpoint, save_audio | |
import torchaudio as ta | |
from pesq import pesq | |
from tqdm import tqdm | |
import auraloss | |
torch.backends.cudnn.benchmark = False | |
def train(rank, a, h): | |
if h.num_gpus > 1: | |
# initialize distributed | |
init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'], | |
world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank) | |
# set seed and device | |
torch.cuda.manual_seed(h.seed) | |
torch.cuda.set_device(rank) | |
device = torch.device('cuda:{:d}'.format(rank)) | |
# define BigVGAN generator | |
generator = BigVGAN(h).to(device) | |
print("Generator params: {}".format(sum(p.numel() for p in generator.parameters()))) | |
# define discriminators. MPD is used by default | |
mpd = MultiPeriodDiscriminator(h).to(device) | |
print("Discriminator mpd params: {}".format(sum(p.numel() for p in mpd.parameters()))) | |
# define additional discriminators. BigVGAN uses MRD as default | |
mrd = MultiResolutionDiscriminator(h).to(device) | |
print("Discriminator mrd params: {}".format(sum(p.numel() for p in mrd.parameters()))) | |
# create or scan the latest checkpoint from checkpoints directory | |
if rank == 0: | |
print(generator) | |
os.makedirs(a.checkpoint_path, exist_ok=True) | |
print("checkpoints directory : ", a.checkpoint_path) | |
if os.path.isdir(a.checkpoint_path): | |
cp_g = scan_checkpoint(a.checkpoint_path, 'g_') | |
cp_do = scan_checkpoint(a.checkpoint_path, 'do_') | |
# load the latest checkpoint if exists | |
steps = 0 | |
if cp_g is None or cp_do is None: | |
state_dict_do = None | |
last_epoch = -1 | |
else: | |
state_dict_g = load_checkpoint(cp_g, device) | |
state_dict_do = load_checkpoint(cp_do, device) | |
generator.load_state_dict(state_dict_g['generator']) | |
mpd.load_state_dict(state_dict_do['mpd']) | |
mrd.load_state_dict(state_dict_do['mrd']) | |
steps = state_dict_do['steps'] + 1 | |
last_epoch = state_dict_do['epoch'] | |
# initialize DDP, optimizers, and schedulers | |
if h.num_gpus > 1: | |
generator = DistributedDataParallel(generator, device_ids=[rank]).to(device) | |
mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device) | |
mrd = DistributedDataParallel(mrd, device_ids=[rank]).to(device) | |
optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2]) | |
optim_d = torch.optim.AdamW(itertools.chain(mrd.parameters(), mpd.parameters()), | |
h.learning_rate, betas=[h.adam_b1, h.adam_b2]) | |
if state_dict_do is not None: | |
optim_g.load_state_dict(state_dict_do['optim_g']) | |
optim_d.load_state_dict(state_dict_do['optim_d']) | |
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch) | |
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch) | |
# define training and validation datasets | |
# unseen_validation_filelist will contain sample filepaths outside the seen training & validation dataset | |
# example: trained on LibriTTS, validate on VCTK | |
training_filelist, validation_filelist, list_unseen_validation_filelist = get_dataset_filelist(a) | |
trainset = MelDataset(training_filelist, h, h.segment_size, h.n_fft, h.num_mels, | |
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0, | |
shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device, | |
fine_tuning=a.fine_tuning, base_mels_path=a.input_mels_dir, is_seen=True) | |
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None | |
train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False, | |
sampler=train_sampler, | |
batch_size=h.batch_size, | |
pin_memory=True, | |
drop_last=True) | |
if rank == 0: | |
validset = MelDataset(validation_filelist, h, h.segment_size, h.n_fft, h.num_mels, | |
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0, | |
fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning, | |
base_mels_path=a.input_mels_dir, is_seen=True) | |
validation_loader = DataLoader(validset, num_workers=1, shuffle=False, | |
sampler=None, | |
batch_size=1, | |
pin_memory=True, | |
drop_last=True) | |
list_unseen_validset = [] | |
list_unseen_validation_loader = [] | |
for i in range(len(list_unseen_validation_filelist)): | |
unseen_validset = MelDataset(list_unseen_validation_filelist[i], h, h.segment_size, h.n_fft, h.num_mels, | |
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0, | |
fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning, | |
base_mels_path=a.input_mels_dir, is_seen=False) | |
unseen_validation_loader = DataLoader(unseen_validset, num_workers=1, shuffle=False, | |
sampler=None, | |
batch_size=1, | |
pin_memory=True, | |
drop_last=True) | |
list_unseen_validset.append(unseen_validset) | |
list_unseen_validation_loader.append(unseen_validation_loader) | |
# Tensorboard logger | |
sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs')) | |
if a.save_audio: # also save audio to disk if --save_audio is set to True | |
os.makedirs(os.path.join(a.checkpoint_path, 'samples'), exist_ok=True) | |
# validation loop | |
# "mode" parameter is automatically defined as (seen or unseen)_(name of the dataset) | |
# if the name of the dataset contains "nonspeech", it skips PESQ calculation to prevent errors | |
def validate(rank, a, h, loader, mode="seen"): | |
assert rank == 0, "validate should only run on rank=0" | |
generator.eval() | |
torch.cuda.empty_cache() | |
val_err_tot = 0 | |
val_pesq_tot = 0 | |
val_mrstft_tot = 0 | |
# modules for evaluation metrics | |
pesq_resampler = ta.transforms.Resample(h.sampling_rate, 16000).cuda() | |
loss_mrstft = auraloss.freq.MultiResolutionSTFTLoss(device="cuda") | |
if a.save_audio: # also save audio to disk if --save_audio is set to True | |
os.makedirs(os.path.join(a.checkpoint_path, 'samples', 'gt_{}'.format(mode)), exist_ok=True) | |
os.makedirs(os.path.join(a.checkpoint_path, 'samples', '{}_{:08d}'.format(mode, steps)), exist_ok=True) | |
with torch.no_grad(): | |
print("step {} {} speaker validation...".format(steps, mode)) | |
# loop over validation set and compute metrics | |
for j, batch in tqdm(enumerate(loader)): | |
x, y, _, y_mel = batch | |
y = y.to(device) | |
if hasattr(generator, 'module'): | |
y_g_hat = generator.module(x.to(device)) | |
else: | |
y_g_hat = generator(x.to(device)) | |
y_mel = y_mel.to(device, non_blocking=True) | |
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, | |
h.hop_size, h.win_size, | |
h.fmin, h.fmax_for_loss) | |
val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item() | |
# PESQ calculation. only evaluate PESQ if it's speech signal (nonspeech PESQ will error out) | |
if not "nonspeech" in mode: # skips if the name of dataset (in mode string) contains "nonspeech" | |
# resample to 16000 for pesq | |
y_16k = pesq_resampler(y) | |
y_g_hat_16k = pesq_resampler(y_g_hat.squeeze(1)) | |
y_int_16k = (y_16k[0] * MAX_WAV_VALUE).short().cpu().numpy() | |
y_g_hat_int_16k = (y_g_hat_16k[0] * MAX_WAV_VALUE).short().cpu().numpy() | |
val_pesq_tot += pesq(16000, y_int_16k, y_g_hat_int_16k, 'wb') | |
# MRSTFT calculation | |
val_mrstft_tot += loss_mrstft(y_g_hat.squeeze(1), y).item() | |
# log audio and figures to Tensorboard | |
if j % a.eval_subsample == 0: # subsample every nth from validation set | |
if steps >= 0: | |
sw.add_audio('gt_{}/y_{}'.format(mode, j), y[0], steps, h.sampling_rate) | |
if a.save_audio: # also save audio to disk if --save_audio is set to True | |
save_audio(y[0], os.path.join(a.checkpoint_path, 'samples', 'gt_{}'.format(mode), '{:04d}.wav'.format(j)), h.sampling_rate) | |
sw.add_figure('gt_{}/y_spec_{}'.format(mode, j), plot_spectrogram(x[0]), steps) | |
sw.add_audio('generated_{}/y_hat_{}'.format(mode, j), y_g_hat[0], steps, h.sampling_rate) | |
if a.save_audio: # also save audio to disk if --save_audio is set to True | |
save_audio(y_g_hat[0, 0], os.path.join(a.checkpoint_path, 'samples', '{}_{:08d}'.format(mode, steps), '{:04d}.wav'.format(j)), h.sampling_rate) | |
# spectrogram of synthesized audio | |
y_hat_spec = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, | |
h.sampling_rate, h.hop_size, h.win_size, | |
h.fmin, h.fmax) | |
sw.add_figure('generated_{}/y_hat_spec_{}'.format(mode, j), | |
plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), steps) | |
# visualization of spectrogram difference between GT and synthesized audio | |
# difference higher than 1 is clipped for better visualization | |
spec_delta = torch.clamp(torch.abs(x[0] - y_hat_spec.squeeze(0).cpu()), min=1e-6, max=1.) | |
sw.add_figure('delta_dclip1_{}/spec_{}'.format(mode, j), | |
plot_spectrogram_clipped(spec_delta.numpy(), clip_max=1.), steps) | |
val_err = val_err_tot / (j + 1) | |
val_pesq = val_pesq_tot / (j + 1) | |
val_mrstft = val_mrstft_tot / (j + 1) | |
# log evaluation metrics to Tensorboard | |
sw.add_scalar("validation_{}/mel_spec_error".format(mode), val_err, steps) | |
sw.add_scalar("validation_{}/pesq".format(mode), val_pesq, steps) | |
sw.add_scalar("validation_{}/mrstft".format(mode), val_mrstft, steps) | |
generator.train() | |
# if the checkpoint is loaded, start with validation loop | |
if steps != 0 and rank == 0 and not a.debug: | |
if not a.skip_seen: | |
validate(rank, a, h, validation_loader, | |
mode="seen_{}".format(train_loader.dataset.name)) | |
for i in range(len(list_unseen_validation_loader)): | |
validate(rank, a, h, list_unseen_validation_loader[i], | |
mode="unseen_{}".format(list_unseen_validation_loader[i].dataset.name)) | |
# exit the script if --evaluate is set to True | |
if a.evaluate: | |
exit() | |
# main training loop | |
generator.train() | |
mpd.train() | |
mrd.train() | |
for epoch in range(max(0, last_epoch), a.training_epochs): | |
if rank == 0: | |
start = time.time() | |
print("Epoch: {}".format(epoch+1)) | |
if h.num_gpus > 1: | |
train_sampler.set_epoch(epoch) | |
for i, batch in enumerate(train_loader): | |
if rank == 0: | |
start_b = time.time() | |
x, y, _, y_mel = batch | |
x = x.to(device, non_blocking=True) | |
y = y.to(device, non_blocking=True) | |
y_mel = y_mel.to(device, non_blocking=True) | |
y = y.unsqueeze(1) | |
y_g_hat = generator(x) | |
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, | |
h.fmin, h.fmax_for_loss) | |
optim_d.zero_grad() | |
# MPD | |
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach()) | |
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g) | |
# MRD | |
y_ds_hat_r, y_ds_hat_g, _, _ = mrd(y, y_g_hat.detach()) | |
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g) | |
loss_disc_all = loss_disc_s + loss_disc_f | |
# whether to freeze D for initial training steps | |
if steps >= a.freeze_step: | |
loss_disc_all.backward() | |
grad_norm_mpd = torch.nn.utils.clip_grad_norm_(mpd.parameters(), 1000.) | |
grad_norm_mrd = torch.nn.utils.clip_grad_norm_(mrd.parameters(), 1000.) | |
optim_d.step() | |
else: | |
print("WARNING: skipping D training for the first {} steps".format(a.freeze_step)) | |
grad_norm_mpd = 0. | |
grad_norm_mrd = 0. | |
# generator | |
optim_g.zero_grad() | |
# L1 Mel-Spectrogram Loss | |
loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45 | |
# MPD loss | |
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat) | |
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g) | |
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g) | |
# MRD loss | |
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = mrd(y, y_g_hat) | |
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g) | |
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g) | |
if steps >= a.freeze_step: | |
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel | |
else: | |
print("WARNING: using regression loss only for G for the first {} steps".format(a.freeze_step)) | |
loss_gen_all = loss_mel | |
loss_gen_all.backward() | |
grad_norm_g = torch.nn.utils.clip_grad_norm_(generator.parameters(), 1000.) | |
optim_g.step() | |
if rank == 0: | |
# STDOUT logging | |
if steps % a.stdout_interval == 0: | |
with torch.no_grad(): | |
mel_error = F.l1_loss(y_mel, y_g_hat_mel).item() | |
print('Steps : {:d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}'. | |
format(steps, loss_gen_all, mel_error, time.time() - start_b)) | |
# checkpointing | |
if steps % a.checkpoint_interval == 0 and steps != 0: | |
checkpoint_path = "{}/g_{:08d}".format(a.checkpoint_path, steps) | |
save_checkpoint(checkpoint_path, | |
{'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()}) | |
checkpoint_path = "{}/do_{:08d}".format(a.checkpoint_path, steps) | |
save_checkpoint(checkpoint_path, | |
{'mpd': (mpd.module if h.num_gpus > 1 else mpd).state_dict(), | |
'mrd': (mrd.module if h.num_gpus > 1 else mrd).state_dict(), | |
'optim_g': optim_g.state_dict(), | |
'optim_d': optim_d.state_dict(), | |
'steps': steps, | |
'epoch': epoch}) | |
# Tensorboard summary logging | |
if steps % a.summary_interval == 0: | |
sw.add_scalar("training/gen_loss_total", loss_gen_all, steps) | |
sw.add_scalar("training/mel_spec_error", mel_error, steps) | |
sw.add_scalar("training/fm_loss_mpd", loss_fm_f.item(), steps) | |
sw.add_scalar("training/gen_loss_mpd", loss_gen_f.item(), steps) | |
sw.add_scalar("training/disc_loss_mpd", loss_disc_f.item(), steps) | |
sw.add_scalar("training/grad_norm_mpd", grad_norm_mpd, steps) | |
sw.add_scalar("training/fm_loss_mrd", loss_fm_s.item(), steps) | |
sw.add_scalar("training/gen_loss_mrd", loss_gen_s.item(), steps) | |
sw.add_scalar("training/disc_loss_mrd", loss_disc_s.item(), steps) | |
sw.add_scalar("training/grad_norm_mrd", grad_norm_mrd, steps) | |
sw.add_scalar("training/grad_norm_g", grad_norm_g, steps) | |
sw.add_scalar("training/learning_rate_d", scheduler_d.get_last_lr()[0], steps) | |
sw.add_scalar("training/learning_rate_g", scheduler_g.get_last_lr()[0], steps) | |
sw.add_scalar("training/epoch", epoch+1, steps) | |
# validation | |
if steps % a.validation_interval == 0: | |
# plot training input x so far used | |
for i_x in range(x.shape[0]): | |
sw.add_figure('training_input/x_{}'.format(i_x), plot_spectrogram(x[i_x].cpu()), steps) | |
sw.add_audio('training_input/y_{}'.format(i_x), y[i_x][0], steps, h.sampling_rate) | |
# seen and unseen speakers validation loops | |
if not a.debug and steps != 0: | |
validate(rank, a, h, validation_loader, | |
mode="seen_{}".format(train_loader.dataset.name)) | |
for i in range(len(list_unseen_validation_loader)): | |
validate(rank, a, h, list_unseen_validation_loader[i], | |
mode="unseen_{}".format(list_unseen_validation_loader[i].dataset.name)) | |
steps += 1 | |
scheduler_g.step() | |
scheduler_d.step() | |
if rank == 0: | |
print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start))) | |
def main(): | |
print('Initializing Training Process..') | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--group_name', default=None) | |
parser.add_argument('--input_wavs_dir', default='LibriTTS') | |
parser.add_argument('--input_mels_dir', default='ft_dataset') | |
parser.add_argument('--input_training_file', default='LibriTTS/train-full.txt') | |
parser.add_argument('--input_validation_file', default='LibriTTS/val-full.txt') | |
parser.add_argument('--list_input_unseen_wavs_dir', nargs='+', default=['LibriTTS', 'LibriTTS']) | |
parser.add_argument('--list_input_unseen_validation_file', nargs='+', default=['LibriTTS/dev-clean.txt', 'LibriTTS/dev-other.txt']) | |
parser.add_argument('--checkpoint_path', default='exp/bigvgan') | |
parser.add_argument('--config', default='') | |
parser.add_argument('--training_epochs', default=100000, type=int) | |
parser.add_argument('--stdout_interval', default=5, type=int) | |
parser.add_argument('--checkpoint_interval', default=50000, type=int) | |
parser.add_argument('--summary_interval', default=100, type=int) | |
parser.add_argument('--validation_interval', default=50000, type=int) | |
parser.add_argument('--freeze_step', default=0, type=int, | |
help='freeze D for the first specified steps. G only uses regression loss for these steps.') | |
parser.add_argument('--fine_tuning', default=False, type=bool) | |
parser.add_argument('--debug', default=False, type=bool, | |
help="debug mode. skips validation loop throughout training") | |
parser.add_argument('--evaluate', default=False, type=bool, | |
help="only run evaluation from checkpoint and exit") | |
parser.add_argument('--eval_subsample', default=5, type=int, | |
help="subsampling during evaluation loop") | |
parser.add_argument('--skip_seen', default=False, type=bool, | |
help="skip seen dataset. useful for test set inference") | |
parser.add_argument('--save_audio', default=False, type=bool, | |
help="save audio of test set inference to disk") | |
a = parser.parse_args() | |
with open(a.config) as f: | |
data = f.read() | |
json_config = json.loads(data) | |
h = AttrDict(json_config) | |
build_env(a.config, 'config.json', a.checkpoint_path) | |
torch.manual_seed(h.seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(h.seed) | |
h.num_gpus = torch.cuda.device_count() | |
h.batch_size = int(h.batch_size / h.num_gpus) | |
print('Batch size per GPU :', h.batch_size) | |
else: | |
pass | |
if h.num_gpus > 1: | |
mp.spawn(train, nprocs=h.num_gpus, args=(a, h,)) | |
else: | |
train(0, a, h) | |
if __name__ == '__main__': | |
main() | |