File size: 9,348 Bytes
1cc3b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import time
import py3Dmol
import gradio as gr
import numpy as np
import torch
import esm
from io import BytesIO
import esm.inverse_folding
import requests
# import util
# from gearnet import dataset, model
# from gearnet.dataset import bio_load_pdb
from tqdm import tqdm
from torchdrug import core, models, tasks, datasets, utils, data
from torchdrug.utils import comm
import sys
import glob
import math
import pprint
import random


def get_pdb(seq):
    print(f'[LOG]    Obataining pdb files: {seq}.')

    # model = esm.pretrained.esmfold_v1()
    # model = model.eval().cuda()

    # with torch.no_grad():
    #     pdb = model.infer_pdb(sequence)

    url = 'https://api.esmatlas.com/foldSequence/v1/pdb/'
    r = requests.post(url, data=seq)
    pdb = r.text
    return pdb


def get_score(transform, task, cfg, seq):
    print(f'[LOG]    Predicting scores: {seq}.')
    pdb = get_pdb(seq)
    outpath = "data/demo/tmp_get_score.pdb"
    with open(outpath, "w") as f:
        f.write(pdb)

    pdb_files = [outpath]
    device = torch.device(cfg.gpu)
    # task = task.cuda(device)
    task.eval()
    batch_size = cfg.get("batch_size", 1)
    preds = []
    for i in tqdm(range(0, len(pdb_files), batch_size)):
        proteins = []
        for pdb_file in pdb_files[i:i+batch_size]:
            protein, sequence = bio_load_pdb(pdb_file)
            proteins.append(protein)
        protein = data.Protein.pack(proteins)
        # protein = protein.cuda(device)
        batch = {"graph": protein}
        batch = transform(batch)
        with torch.no_grad():
            pred = task.predict(batch)
        for j, value in enumerate(pred.cpu().unbind()):
            name = os.path.basename(pdb_files[i+j])[:-4]
            preds.append((name, value.item()))

    preds = sorted(preds, key=lambda x: -x[-1])
    print(preds)
    return preds[0][1], get_3dview(pdb)


def get_3dview(pdb):
    view = py3Dmol.view(width=500, height=500)
    view.addModel(pdb, "pdb")
    view.setStyle({'cartoon': {'color': 'spectrum'}})
    # view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}}) 
    # view.zoomTo()
    output = view._make_html().replace("'", '"')
    x = f"""<!DOCTYPE html><html></center> {output} </center></html>"""  # do not use ' in this input
    
    return f"""<iframe height="500px" width="100%"  name="result" allow="midi; geolocation; microphone; camera;
                            display-capture; encrypted-media;" sandbox="allow-modals allow-forms
                            allow-scripts allow-same-origin allow-popups
                            allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
                            allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""


def display_pdb(sequence):
    # function to display pdb in py3dmol

    view = py3Dmol.view(width=500, height=500)
    view.addModel(get_pdb(sequence), "pdb")
    view.setStyle({'cartoon': {'color': 'spectrum'}})
    # view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}}) 
    view.zoomTo()
    output = view._make_html().replace("'", '"')
    x = f"""<!DOCTYPE html><html></center> {output} </center></html>"""  # do not use ' in this input
    
    return f"""<iframe height="500px" width="100%"  name="result" allow="midi; geolocation; microphone; camera;
                            display-capture; encrypted-media;" sandbox="allow-modals allow-forms
                            allow-scripts allow-same-origin allow-popups
                            allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
                            allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""

def display_pdb_by_pdb(pdb):
    # function to display pdb in py3dmol

    view = py3Dmol.view(width=500, height=500)
    view.addModel(pdb, "pdb")
    view.setStyle({'cartoon': {'color': 'spectrum'}})
    # view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}}) 
    view.zoomTo()
    output = view._make_html().replace("'", '"')
    x = f"""<!DOCTYPE html><html></center> {output} </center></html>"""  # do not use ' in this input
    
    return f"""<iframe height="500px" width="100%"  name="result" allow="midi; geolocation; microphone; camera;
                            display-capture; encrypted-media;" sandbox="allow-modals allow-forms
                            allow-scripts allow-same-origin allow-popups
                            allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
                            allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""


def sample_seq(sequence, chain='A',num_samples=20,temperature=1):

    pdbfile="data/demo/tmp_sample_seq_singlechain.pdb"
    with open(pdbfile, "w") as f:
        f.write(get_pdb(sequence))

    model, alphabet = esm.pretrained.esm_if1_gvp4_t16_142M_UR50()
    model = model.eval()

    if torch.cuda.is_available():
        model = model.cuda()

    args, vars = util.parse_args()
    cfg = util.load_config(args.config, context=vars)

    seed = args.seed
    torch.manual_seed(seed + comm.get_rank())
    os.environ['PYTHONHASHSEED'] = str(seed)
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    if args.multichain: 
        structure = esm.inverse_folding.util.load_structure(pdbfile)
        coords, native_seqs = esm.inverse_folding.multichain_util.extract_coords_from_complex(structure)
        native_seq = native_seqs[chain]
        print('[LOG]    Sampling multichain. Native sequence loaded from structure file:', native_seq)
    else:
        coords, native_seq = esm.inverse_folding.util.load_coords(pdbfile, chain)
        print('[LOG]    Sampling singlechain. Native sequence loaded from structure file:', native_seq)

    # for get_score
    dataset = core.Configurable.load_config_dict(cfg.dataset)
    task = core.Configurable.load_config_dict(cfg.task)
    task.preprocess(dataset, None, None)
    transform = core.Configurable.load_config_dict(cfg.transform)
    if cfg.get("checkpoint") is not None:
        cfg.checkpoint = os.path.expanduser(cfg.checkpoint)
        pretrained_dict = torch.load(cfg.checkpoint, map_location=torch.device('cpu'))['model']
        model_dict = task.state_dict()
        task.load_state_dict(pretrained_dict)

    res = ""
    seq_list = []
    i = 0
    while i < num_samples:
        if args.multichain: 
            sampled_seq = esm.inverse_folding.multichain_util.sample_sequence_in_complex(
                    model, coords, chain, temperature=temperature)
        else:
            sampled_seq = model.sample(coords, temperature=temperature, device=torch.device('cpu'))
        print(f'[LOG]    Sampling sequence: {sampled_seq}.')

        # score, view3d = get_score(transform, task, cfg, sampled_seq)
        # i += 1
        try:
            score, view3d = get_score(transform, task, cfg, sampled_seq)
            print(score)
            i += 1
        except ValueError as ve:
            print(ve)
            continue
        
        seq_list.append([score, sampled_seq, view3d])

        if len(seq_list) == 1:
            yield str(i)+" / " + str(num_samples), seq_list[0][1], None, None, seq_list[0][2], None, None, seq_list[0][0], None, None
        elif len(seq_list) == 2:
            seq_list = sorted(seq_list,  key=lambda x: x[0])
            yield str(i)+" / " + str(num_samples), seq_list[1][1], seq_list[0][1], None, seq_list[1][2], seq_list[0][2], None, seq_list[1][0], seq_list[0][0], None
        else:
            seq_list = sorted(seq_list,  key=lambda x: x[0])[-3:]
            yield str(i)+" / "+ str(num_samples), seq_list[2][1], seq_list[1][1], seq_list[0][1], seq_list[2][2], seq_list[1][2], seq_list[0][2], seq_list[2][0], seq_list[1][0], seq_list[0][0]

def show_gif():
    path = 'output'
    pdb_files = sorted(os.listdir(path), key=lambda x: int(x.split('_')[1]))
    num = len(pdb_files)
    step = 1
    i = 0
    while True:
        if i > num:
            break
        step = int(torch.tensor(i+3).log().item())
        time.sleep(0.3)
        p = os.path.join(path, pdb_files[i])
        with open(p,'r') as f:
            f_pdb = f.readlines()
        
        i += step
        yield display_pdb_by_pdb(''.join(f_pdb)), pdb_files[i]



if __name__ == "__main__":
    title = "Artificial Intelligence Generated Protein"

    css = "footer {visibility: hidden}"

    with gr.Blocks(title=title, css=css) as demo:
        output_viewer = gr.HTML()
        with gr.Row():
            gif = gr.HTML()
        it = gr.Textbox(label="Iteraton")
        btn3 = gr.Button("GIF")
        btn3.click(show_gif, [], [gif, it])
    
    demo.queue()
    demo.launch(show_api=False, server_name="0.0.0.0", share=True)
    # demo.launch(show_api=False, share=True)