File size: 2,042 Bytes
1cc3b0d d0fcd28 1cc3b0d 4ff3e50 31d724b 1cc3b0d e6a6e54 1cc3b0d e38da99 1cc3b0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import os
import time
import py3Dmol
import gradio as gr
def display_pdb_by_pdb(pdb):
# function to display pdb in py3dmol
view = py3Dmol.view(width=500, height=500)
view.addModel(pdb, "pdb")
view.setStyle({'cartoon': {'color': 'spectrum'}})
# view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}})
view.zoomTo()
output = view._make_html().replace("'", '"')
x = f"""<!DOCTYPE html><html></center> {output} </center></html>""" # do not use ' in this input
return f"""<iframe height="500px" width="100%" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
def show_gif():
path = 'output'
pdb_files = sorted(os.listdir(path), key=lambda x: int(x.split('_')[1]))
num = len(pdb_files)
i = 0
while True:
if i >= num: break
time.sleep(0.5)
p = os.path.join(path, pdb_files[i])
with open(p,'r') as f:
f_pdb = f.readlines()
i = (i + 1) % num
yield display_pdb_by_pdb(''.join(f_pdb)), pdb_files[i].split('_')[1]
if __name__ == "__main__":
title = "Artificial Intelligence Generated Protein"
css = "footer {visibility: hidden}"
with gr.Blocks(title=title, css=css) as demo:
output_viewer = gr.HTML()
with gr.Row():
gif = gr.HTML()
it = gr.Textbox(label="Iteration")
btn3 = gr.Button("Generate")
btn3.click(show_gif, [], [gif, it])
demo.queue()
demo.launch(show_api=False, server_name="0.0.0.0")
# demo.launch(show_api=False, share=True) |