File size: 17,530 Bytes
0902a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
from typing import Dict
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
from einops import rearrange
from ldm.util import instantiate_from_config
# from datasets import load_dataset
import os
from collections import defaultdict
import cv2 
import albumentations
import random
from ldm.data.util import new_process_im, imagenet_process_im, process_wb_im, vqgan_process_im
import re
from annotator.render_images import render_glyph_image
class TextCapsCLDataset(Dataset):
    def __init__(self,
        img_folder,
        caption_file,
        ocr_file,
        image_transforms=[],
        first_stage_key = "jpg", cond_stage_key = "txt",
        OneCapPerImage = False,
        default_caption="",
        ext="jpg",
        postprocess=None,
        return_paths=False,

        filter_data=False,
        filter_words=["sign", "poster"], 
        filter_token_num = False,
        max_token_num = 3,

        
        no_hint = False, 
        hint_folder = None,
        control_key = "hint",

        imagenet_proc = False,
        imagenet_proc_config = None,
        do_new_proc = True,
        new_proc_config = None,
        new_ocr_info = True,

        rendered_txt_in_caption = False,
        caption_choices = ["original", "w_rend_text", "wo_rend_text"],
        caption_drop_rates = [0.1, 0.5, 0.1],

        add_glyph_control = False,
        glyph_control_key = "centered_hint", # "arranged_hint"
        glyph_control_proc_config = None,
        centered_glyph_folder = None,
        max_glyph_imgs_num = 0, #5,
        glyph_image_encoder_type = "CLIP",
        glyph_image_drop_rate = 0,
        uncond_glyph_image_type = "white" #"whiteboard",
        ) -> None:
        self.root_dir = Path(img_folder)
        self.first_stage_key = first_stage_key
        self.cond_stage_key = cond_stage_key

        # postprocess
        if isinstance(postprocess, DictConfig):
            postprocess = instantiate_from_config(postprocess)
        self.postprocess = postprocess

        # image transform
        self.imagenet_proc = imagenet_proc
        self.do_new_proc = do_new_proc
        if self.do_new_proc:
            if new_proc_config is not None:
                self.new_proc_func = instantiate_from_config(new_proc_config)
            else:
                self.new_proc_func = new_process_im()
        elif self.imagenet_proc:
            if imagenet_proc_config is not None:
                self.imagenet_proc_func = instantiate_from_config(imagenet_proc_config)
            else:
                self.imagenet_proc_func = imagenet_process_im()
            self.process_im = self.imagenet_proc_func 
        else:
            if isinstance(image_transforms, ListConfig):
                image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
            image_transforms.extend([transforms.ToTensor(), # to be checked
                                    transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
            image_transforms = transforms.Compose(image_transforms)
            self.tform = image_transforms
            self.process_im = self.simple_process_im

        # caption
        assert caption_file is not None
        with open(caption_file, "rt") as f:
            ext = Path(caption_file).suffix.lower()
            if ext == ".json":
                captions = json.load(f)
            else:
                raise ValueError(f"Unrecognised format: {ext}")
        self.captions = captions["data"]
        if OneCapPerImage and ocr_file is None:
            new_captions = []
            taken_images = []
            for caption_data in self.captions:
                if caption_data["image_id"] in taken_images:
                    continue
                else:
                    new_captions.append(caption_data)
                    taken_images.append(caption_data["image_id"])
            self.captions = new_captions

        # ocr info
        assert ocr_file is not None
        self.ocr_file = ocr_file
        with open(ocr_file, "r") as f:
            ocrs = json.loads(f.read())
            ocr_data = ocrs['data']
        self.ocr_data = ocr_data

        # hint 
        self.no_hint = no_hint
        self.control_key = control_key
        self.hint_folder = None
        if not self.no_hint:
            if hint_folder is None:
                print("Warning: The folder of hint images is not provided! No hint will be used")
                self.no_hint = True
            else:
                self.hint_folder = Path(hint_folder)

        # centered_hint
        self.add_glyph_control = add_glyph_control
        self.glyph_control_key = glyph_control_key
        self.centered_glyph_folder = centered_glyph_folder
        if add_glyph_control:
            # if centered_glyph_folder is not None:
                # self.add_glyph_control = True
                # self.centered_glyph_folder = centered_glyph_folder
            if glyph_image_encoder_type not in ["CLIP", "VQGAN"]:
                print("currently not support other types of glyph image encoders")
                raise ValueError
            if glyph_control_proc_config is not None:
                self.glyph_control_proc = instantiate_from_config(glyph_control_proc_config)
            else:
                if glyph_image_encoder_type == "CLIP":
                    self.glyph_control_proc = process_wb_im(exchange_channel= True, image_transforms=[])
                elif glyph_image_encoder_type == "VQGAN":
                    self.glyph_control_proc = vqgan_process_im(augment=False, ori_preprocessor = False)
            # else:
            #     print("Warning: The folder of centered glyph images is not provided! No additional glyph images will be used")
        self.glyph_image_encoder_type = glyph_image_encoder_type        
        self.default_caption = default_caption
        self.return_paths = return_paths
        self.filter_data = filter_data
        self.filter_words = filter_words
        self.new_ocr_info = new_ocr_info
        self.rendered_txt_in_caption = rendered_txt_in_caption
        self.filter_token_num = filter_token_num
        self.max_token_num = max_token_num
        self.caption_choices = caption_choices
        self.caption_drop_rates = caption_drop_rates
        self.max_glyph_imgs_num = max_glyph_imgs_num
        self.glyph_image_drop_rate = glyph_image_drop_rate
        self.uncond_glyph_image_type = uncond_glyph_image_type

    def __len__(self):
        return len(self.ocr_data)


    def __getitem__(self, index):
        data = {}
        assert self.ocr_file is not None
        sample = self.ocr_data[index]
        image_id = sample["image_id"]
        ocr_tokens = sample["ocr_tokens"]
        ocr_info = sample["ocr_info"]
        chosen = image_id + ".jpg"
        
        # original image filename
        filename = self.root_dir/chosen
        if not self.no_hint:
            # hint image filename
            hint_filename = self.hint_folder/chosen
            if not os.path.isfile(hint_filename):
                print("Hint file {} does not exist".format(hint_filename))
                return self.__getitem__(np.random.choice(self.__len__()))
        else:
            hint_filename = None

        for d in self.captions:
            if d["image_id"] == image_id:
                image_captions = d["reference_strs"]
                image_classes = d["image_classes"]
                break

        if not len(ocr_tokens) or not len(image_captions) or not len(image_classes):
            return self.__getitem__(np.random.choice(self.__len__()))
        
        # filter data according the object classes
        if self.filter_data:
            if not len([word for word in self.filter_words if word in " ".join(image_classes).lower()]):
                return self.__getitem__(np.random.choice(self.__len__()))
        

        # get the info about the ocr area in order to 
        # (1): obtain the locations where the images are cropped during augmentation 
        # (2): filter the data according the ocr area or the number of ocr tokens    
        with Image.open(filename) as img:
            im_w, im_h = img.size 
        pos_info_list = []
        # pos_info_dict = defaultdict(list) #dict()
        pos_info_tuples = []
        # filter the data according the ocr area or the number of ocr tokens    
        if self.filter_token_num and len(ocr_info) > self.max_token_num:
            return self.__getitem__(np.random.choice(self.__len__()))
        for item in ocr_info:
            token_box = item['bounding_box']
            lf, up = token_box['top_left_x'], token_box['top_left_y']
            w, h = token_box['width'], token_box['height']
            if not self.new_ocr_info:
                # old version
                rg, dn = lf + w, up + h
                pos_info_list.append([lf, up, rg, dn])
            else:
                ## fix the bug when rotation happens
                # pos_info_dict[item["word"]] = 0.06 * lf + up
                lf, w = int(lf * im_w), int(w * im_w)
                up, h = int(up * im_h), int(h * im_h)
                yaw = token_box['yaw']
                tf_xy = np.array([lf, up])
                yaw = yaw * np.pi / 180
                rotate_mx = np.array([
                    [np.cos(yaw), -np.sin(yaw)],
                    [np.sin(yaw), np.cos(yaw)]
                ])
                rel_cord = np.matmul(rotate_mx, np.array(
                    [[0, 0],
                    [w, 0],
                    [0, h],
                    [w, h]]
                ).T)
                min_xy = np.min(rel_cord, axis = 1).astype(int) + tf_xy
                max_xy = np.max(rel_cord, axis = 1).astype(int) + tf_xy
                pos_info_list.append(
                    [
                    min_xy[0], min_xy[1],
                    max_xy[0], max_xy[1]
                    ]
                )
                mean_xy = rel_cord[:, -1] / 2 + tf_xy
                # pos_info_dict[item["word"]].append(0.2 * lf + mean_xy[1]) #0.15
                pos_info_tuples.append((item["word"], 0.2 * lf + mean_xy[1])) #0.15
        pos_info_list = np.array(pos_info_list)
        all_lf, all_up = np.min(pos_info_list[:, :2], axis = 0)
        all_rg, all_dn = np.max(pos_info_list[:, 2:], axis = 0)
        all_pos_info = [all_lf, all_up, all_rg, all_dn]
        # embed the rendered text into the prompt
        caption_wr_text = None
        # arrange_tokens = [item[0] for item in (sorted(pos_info_dict.items(), key=lambda x: x[1]))]
        arrange_tokens = [item[0] for item in (sorted(pos_info_tuples, key=lambda x: x[1]))]
        if self.rendered_txt_in_caption:
            assert self.filter_data # TODO: support other image classes
            valid_words = " ".join(arrange_tokens)
            class_name = ""
            for word in self.filter_words:
                if word in " ".join(image_classes).lower():
                    class_name = word
                    break
            if class_name == "":
                return self.__getitem__(np.random.choice(self.__len__()))
            else:
                caption_wr_text = 'A {} that says "{}".'.format(
                    class_name, valid_words
                    )                   
        # process the original image and hint image
        if self.do_new_proc:
            # recommended
            assert all_pos_info
            im, im_hint = self.new_proc_func(filename, all_pos_info, hint_filename)
        else:
            im_hint = None
            im = Image.open(filename)
            im = self.process_im(im) # not supported for the flip option for now
            if hint_filename is not None:
                im_hint = Image.open(hint_filename)
                im_hint = self.process_im(im_hint) 
        if not self.no_hint:
            assert im_hint is not None
            data[self.control_key] = im_hint
        data[self.first_stage_key] = im
        # process the centered glyph images
        if self.add_glyph_control:
            drop_glyph_image = torch.rand(1) < self.glyph_image_drop_rate
            # assert self.uncond_glyph_image_type == "whiteboard"  
            if self.glyph_control_key == "centered_hint": 
                if len(arrange_tokens) == 0:
                    print("error: glyphs - None")
                    return self.__getitem__(np.random.choice(self.__len__()))
                if drop_glyph_image:
                    cglyph_images_procd = [
                        self.glyph_control_proc(Image.new("RGB", (224, 224), self.uncond_glyph_image_type))
                    ] * (len(arrange_tokens) if self.max_glyph_imgs_num == 0 else self.max_glyph_imgs_num)
                else:
                    cglyph_images_procd = []
                    if self.centered_glyph_folder is not None:
                        for token in arrange_tokens:
                            ctext = re.sub(r'[^\w\s]', '', token)
                            if ctext == "":
                                print("special charaters: {} | ctext is {}".format(token, ctext))
                                continue
                            cgim_name = os.path.join(self.centered_glyph_folder, rf"{image_id}_{ctext}.jpg")
                            try:
                                cgim = Image.open(cgim_name)
                            except Exception as e:
                                # print(e)
                                # print("Can't open", cgim_name)
                                continue
                            cgim = self.glyph_control_proc(cgim)
                            cglyph_images_procd.append(cgim)
                            if self.max_glyph_imgs_num > 0 and len(cglyph_images_procd) >= self.max_glyph_imgs_num:
                                break
                        if len(cglyph_images_procd) == 0:
                            print("could not find centered glyph images for {}".format(image_id))
                            return self.__getitem__(np.random.choice(self.__len__()))
                    else:
                        glyphs = [rg.strip() for rg in arrange_tokens]
                        # if len(glyphs) == 0:
                        #     print("error: glyphs - None")
                        #     return self.__getitem__(np.random.choice(self.__len__()))
                        if self.max_glyph_imgs_num > 0:
                            glyphs = glyphs[:self.max_glyph_imgs_num]
                        glyph_images = render_glyph_image(glyphs, fill_way="tight") #"both_padding"
                        cglyph_images_procd = []
                        for cgim in glyph_images:
                            if 0 in cgim.size:
                                print("error: glyph image has ", cgim.size, arrange_tokens)
                                return self.__getitem__(np.random.choice(self.__len__()))
                            cglyph_images_procd.append(self.glyph_control_proc(cgim))
            elif self.glyph_control_key == "arranged_hint":
                assert hint_filename is not None
                if not drop_glyph_image:
                    hint_img = Image.open(hint_filename)
                    cglyph_images_procd = [
                        self.glyph_control_proc(
                        hint_img 
                        )
                    ]
                else:
                    cglyph_images_procd = [
                        self.glyph_control_proc(
                        Image.new("RGB", (224, 224), self.uncond_glyph_image_type)
                        )
                    ]
            else:
                print("not support glyph control keys beyond 'centered_hint' and 'arranage_hint'")
                raise ValueError
            # if self.max_glyph_imgs_num > 0:
            #     cglyph_images_procd = cglyph_images_procd[:self.max_glyph_imgs_num]
            # data[self.glyph_control_key] = torch.stack(cglyph_images_procd, dim = 0)
            if isinstance(cglyph_images_procd[0], torch.Tensor): 
                data[self.glyph_control_key] = torch.stack(cglyph_images_procd, dim = 0) 
            elif isinstance(cglyph_images_procd[0], np.ndarray):
                data[self.glyph_control_key] = np.stack(cglyph_images_procd, axis = 0)

        if self.return_paths:
            data["path"] = str(filename)
       
        caption_ori = random.choice(image_captions)
        caption_wo_text = None # TODO
        prompt_list = []
        for i in range(len(self.caption_choices)):
            cc = self.caption_choices[i]
            if cc == "original":
                caption = caption_ori
            elif cc == "w_rend_text":
                caption = caption_wr_text if caption_wr_text is not None else caption_ori
            elif cc == "wo_rend_text":
                caption = caption_wo_text if caption_wo_text is not None else caption_ori
            
            if torch.rand(1) < self.caption_drop_rates[i]:
                caption = ""
            prompt_list.append(caption)

        data[self.cond_stage_key] = prompt_list if len(prompt_list) > 1 else prompt_list[0]
        if self.postprocess is not None:
            data = self.postprocess(data)

        return data

    def simple_process_im(self, im):
        im = im.convert("RGB")
        return self.tform(im)