Spaces:
Runtime error
Runtime error
File size: 17,530 Bytes
0902a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
from typing import Dict
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
from einops import rearrange
from ldm.util import instantiate_from_config
# from datasets import load_dataset
import os
from collections import defaultdict
import cv2
import albumentations
import random
from ldm.data.util import new_process_im, imagenet_process_im, process_wb_im, vqgan_process_im
import re
from annotator.render_images import render_glyph_image
class TextCapsCLDataset(Dataset):
def __init__(self,
img_folder,
caption_file,
ocr_file,
image_transforms=[],
first_stage_key = "jpg", cond_stage_key = "txt",
OneCapPerImage = False,
default_caption="",
ext="jpg",
postprocess=None,
return_paths=False,
filter_data=False,
filter_words=["sign", "poster"],
filter_token_num = False,
max_token_num = 3,
no_hint = False,
hint_folder = None,
control_key = "hint",
imagenet_proc = False,
imagenet_proc_config = None,
do_new_proc = True,
new_proc_config = None,
new_ocr_info = True,
rendered_txt_in_caption = False,
caption_choices = ["original", "w_rend_text", "wo_rend_text"],
caption_drop_rates = [0.1, 0.5, 0.1],
add_glyph_control = False,
glyph_control_key = "centered_hint", # "arranged_hint"
glyph_control_proc_config = None,
centered_glyph_folder = None,
max_glyph_imgs_num = 0, #5,
glyph_image_encoder_type = "CLIP",
glyph_image_drop_rate = 0,
uncond_glyph_image_type = "white" #"whiteboard",
) -> None:
self.root_dir = Path(img_folder)
self.first_stage_key = first_stage_key
self.cond_stage_key = cond_stage_key
# postprocess
if isinstance(postprocess, DictConfig):
postprocess = instantiate_from_config(postprocess)
self.postprocess = postprocess
# image transform
self.imagenet_proc = imagenet_proc
self.do_new_proc = do_new_proc
if self.do_new_proc:
if new_proc_config is not None:
self.new_proc_func = instantiate_from_config(new_proc_config)
else:
self.new_proc_func = new_process_im()
elif self.imagenet_proc:
if imagenet_proc_config is not None:
self.imagenet_proc_func = instantiate_from_config(imagenet_proc_config)
else:
self.imagenet_proc_func = imagenet_process_im()
self.process_im = self.imagenet_proc_func
else:
if isinstance(image_transforms, ListConfig):
image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
image_transforms.extend([transforms.ToTensor(), # to be checked
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
image_transforms = transforms.Compose(image_transforms)
self.tform = image_transforms
self.process_im = self.simple_process_im
# caption
assert caption_file is not None
with open(caption_file, "rt") as f:
ext = Path(caption_file).suffix.lower()
if ext == ".json":
captions = json.load(f)
else:
raise ValueError(f"Unrecognised format: {ext}")
self.captions = captions["data"]
if OneCapPerImage and ocr_file is None:
new_captions = []
taken_images = []
for caption_data in self.captions:
if caption_data["image_id"] in taken_images:
continue
else:
new_captions.append(caption_data)
taken_images.append(caption_data["image_id"])
self.captions = new_captions
# ocr info
assert ocr_file is not None
self.ocr_file = ocr_file
with open(ocr_file, "r") as f:
ocrs = json.loads(f.read())
ocr_data = ocrs['data']
self.ocr_data = ocr_data
# hint
self.no_hint = no_hint
self.control_key = control_key
self.hint_folder = None
if not self.no_hint:
if hint_folder is None:
print("Warning: The folder of hint images is not provided! No hint will be used")
self.no_hint = True
else:
self.hint_folder = Path(hint_folder)
# centered_hint
self.add_glyph_control = add_glyph_control
self.glyph_control_key = glyph_control_key
self.centered_glyph_folder = centered_glyph_folder
if add_glyph_control:
# if centered_glyph_folder is not None:
# self.add_glyph_control = True
# self.centered_glyph_folder = centered_glyph_folder
if glyph_image_encoder_type not in ["CLIP", "VQGAN"]:
print("currently not support other types of glyph image encoders")
raise ValueError
if glyph_control_proc_config is not None:
self.glyph_control_proc = instantiate_from_config(glyph_control_proc_config)
else:
if glyph_image_encoder_type == "CLIP":
self.glyph_control_proc = process_wb_im(exchange_channel= True, image_transforms=[])
elif glyph_image_encoder_type == "VQGAN":
self.glyph_control_proc = vqgan_process_im(augment=False, ori_preprocessor = False)
# else:
# print("Warning: The folder of centered glyph images is not provided! No additional glyph images will be used")
self.glyph_image_encoder_type = glyph_image_encoder_type
self.default_caption = default_caption
self.return_paths = return_paths
self.filter_data = filter_data
self.filter_words = filter_words
self.new_ocr_info = new_ocr_info
self.rendered_txt_in_caption = rendered_txt_in_caption
self.filter_token_num = filter_token_num
self.max_token_num = max_token_num
self.caption_choices = caption_choices
self.caption_drop_rates = caption_drop_rates
self.max_glyph_imgs_num = max_glyph_imgs_num
self.glyph_image_drop_rate = glyph_image_drop_rate
self.uncond_glyph_image_type = uncond_glyph_image_type
def __len__(self):
return len(self.ocr_data)
def __getitem__(self, index):
data = {}
assert self.ocr_file is not None
sample = self.ocr_data[index]
image_id = sample["image_id"]
ocr_tokens = sample["ocr_tokens"]
ocr_info = sample["ocr_info"]
chosen = image_id + ".jpg"
# original image filename
filename = self.root_dir/chosen
if not self.no_hint:
# hint image filename
hint_filename = self.hint_folder/chosen
if not os.path.isfile(hint_filename):
print("Hint file {} does not exist".format(hint_filename))
return self.__getitem__(np.random.choice(self.__len__()))
else:
hint_filename = None
for d in self.captions:
if d["image_id"] == image_id:
image_captions = d["reference_strs"]
image_classes = d["image_classes"]
break
if not len(ocr_tokens) or not len(image_captions) or not len(image_classes):
return self.__getitem__(np.random.choice(self.__len__()))
# filter data according the object classes
if self.filter_data:
if not len([word for word in self.filter_words if word in " ".join(image_classes).lower()]):
return self.__getitem__(np.random.choice(self.__len__()))
# get the info about the ocr area in order to
# (1): obtain the locations where the images are cropped during augmentation
# (2): filter the data according the ocr area or the number of ocr tokens
with Image.open(filename) as img:
im_w, im_h = img.size
pos_info_list = []
# pos_info_dict = defaultdict(list) #dict()
pos_info_tuples = []
# filter the data according the ocr area or the number of ocr tokens
if self.filter_token_num and len(ocr_info) > self.max_token_num:
return self.__getitem__(np.random.choice(self.__len__()))
for item in ocr_info:
token_box = item['bounding_box']
lf, up = token_box['top_left_x'], token_box['top_left_y']
w, h = token_box['width'], token_box['height']
if not self.new_ocr_info:
# old version
rg, dn = lf + w, up + h
pos_info_list.append([lf, up, rg, dn])
else:
## fix the bug when rotation happens
# pos_info_dict[item["word"]] = 0.06 * lf + up
lf, w = int(lf * im_w), int(w * im_w)
up, h = int(up * im_h), int(h * im_h)
yaw = token_box['yaw']
tf_xy = np.array([lf, up])
yaw = yaw * np.pi / 180
rotate_mx = np.array([
[np.cos(yaw), -np.sin(yaw)],
[np.sin(yaw), np.cos(yaw)]
])
rel_cord = np.matmul(rotate_mx, np.array(
[[0, 0],
[w, 0],
[0, h],
[w, h]]
).T)
min_xy = np.min(rel_cord, axis = 1).astype(int) + tf_xy
max_xy = np.max(rel_cord, axis = 1).astype(int) + tf_xy
pos_info_list.append(
[
min_xy[0], min_xy[1],
max_xy[0], max_xy[1]
]
)
mean_xy = rel_cord[:, -1] / 2 + tf_xy
# pos_info_dict[item["word"]].append(0.2 * lf + mean_xy[1]) #0.15
pos_info_tuples.append((item["word"], 0.2 * lf + mean_xy[1])) #0.15
pos_info_list = np.array(pos_info_list)
all_lf, all_up = np.min(pos_info_list[:, :2], axis = 0)
all_rg, all_dn = np.max(pos_info_list[:, 2:], axis = 0)
all_pos_info = [all_lf, all_up, all_rg, all_dn]
# embed the rendered text into the prompt
caption_wr_text = None
# arrange_tokens = [item[0] for item in (sorted(pos_info_dict.items(), key=lambda x: x[1]))]
arrange_tokens = [item[0] for item in (sorted(pos_info_tuples, key=lambda x: x[1]))]
if self.rendered_txt_in_caption:
assert self.filter_data # TODO: support other image classes
valid_words = " ".join(arrange_tokens)
class_name = ""
for word in self.filter_words:
if word in " ".join(image_classes).lower():
class_name = word
break
if class_name == "":
return self.__getitem__(np.random.choice(self.__len__()))
else:
caption_wr_text = 'A {} that says "{}".'.format(
class_name, valid_words
)
# process the original image and hint image
if self.do_new_proc:
# recommended
assert all_pos_info
im, im_hint = self.new_proc_func(filename, all_pos_info, hint_filename)
else:
im_hint = None
im = Image.open(filename)
im = self.process_im(im) # not supported for the flip option for now
if hint_filename is not None:
im_hint = Image.open(hint_filename)
im_hint = self.process_im(im_hint)
if not self.no_hint:
assert im_hint is not None
data[self.control_key] = im_hint
data[self.first_stage_key] = im
# process the centered glyph images
if self.add_glyph_control:
drop_glyph_image = torch.rand(1) < self.glyph_image_drop_rate
# assert self.uncond_glyph_image_type == "whiteboard"
if self.glyph_control_key == "centered_hint":
if len(arrange_tokens) == 0:
print("error: glyphs - None")
return self.__getitem__(np.random.choice(self.__len__()))
if drop_glyph_image:
cglyph_images_procd = [
self.glyph_control_proc(Image.new("RGB", (224, 224), self.uncond_glyph_image_type))
] * (len(arrange_tokens) if self.max_glyph_imgs_num == 0 else self.max_glyph_imgs_num)
else:
cglyph_images_procd = []
if self.centered_glyph_folder is not None:
for token in arrange_tokens:
ctext = re.sub(r'[^\w\s]', '', token)
if ctext == "":
print("special charaters: {} | ctext is {}".format(token, ctext))
continue
cgim_name = os.path.join(self.centered_glyph_folder, rf"{image_id}_{ctext}.jpg")
try:
cgim = Image.open(cgim_name)
except Exception as e:
# print(e)
# print("Can't open", cgim_name)
continue
cgim = self.glyph_control_proc(cgim)
cglyph_images_procd.append(cgim)
if self.max_glyph_imgs_num > 0 and len(cglyph_images_procd) >= self.max_glyph_imgs_num:
break
if len(cglyph_images_procd) == 0:
print("could not find centered glyph images for {}".format(image_id))
return self.__getitem__(np.random.choice(self.__len__()))
else:
glyphs = [rg.strip() for rg in arrange_tokens]
# if len(glyphs) == 0:
# print("error: glyphs - None")
# return self.__getitem__(np.random.choice(self.__len__()))
if self.max_glyph_imgs_num > 0:
glyphs = glyphs[:self.max_glyph_imgs_num]
glyph_images = render_glyph_image(glyphs, fill_way="tight") #"both_padding"
cglyph_images_procd = []
for cgim in glyph_images:
if 0 in cgim.size:
print("error: glyph image has ", cgim.size, arrange_tokens)
return self.__getitem__(np.random.choice(self.__len__()))
cglyph_images_procd.append(self.glyph_control_proc(cgim))
elif self.glyph_control_key == "arranged_hint":
assert hint_filename is not None
if not drop_glyph_image:
hint_img = Image.open(hint_filename)
cglyph_images_procd = [
self.glyph_control_proc(
hint_img
)
]
else:
cglyph_images_procd = [
self.glyph_control_proc(
Image.new("RGB", (224, 224), self.uncond_glyph_image_type)
)
]
else:
print("not support glyph control keys beyond 'centered_hint' and 'arranage_hint'")
raise ValueError
# if self.max_glyph_imgs_num > 0:
# cglyph_images_procd = cglyph_images_procd[:self.max_glyph_imgs_num]
# data[self.glyph_control_key] = torch.stack(cglyph_images_procd, dim = 0)
if isinstance(cglyph_images_procd[0], torch.Tensor):
data[self.glyph_control_key] = torch.stack(cglyph_images_procd, dim = 0)
elif isinstance(cglyph_images_procd[0], np.ndarray):
data[self.glyph_control_key] = np.stack(cglyph_images_procd, axis = 0)
if self.return_paths:
data["path"] = str(filename)
caption_ori = random.choice(image_captions)
caption_wo_text = None # TODO
prompt_list = []
for i in range(len(self.caption_choices)):
cc = self.caption_choices[i]
if cc == "original":
caption = caption_ori
elif cc == "w_rend_text":
caption = caption_wr_text if caption_wr_text is not None else caption_ori
elif cc == "wo_rend_text":
caption = caption_wo_text if caption_wo_text is not None else caption_ori
if torch.rand(1) < self.caption_drop_rates[i]:
caption = ""
prompt_list.append(caption)
data[self.cond_stage_key] = prompt_list if len(prompt_list) > 1 else prompt_list[0]
if self.postprocess is not None:
data = self.postprocess(data)
return data
def simple_process_im(self, im):
im = im.convert("RGB")
return self.tform(im)
|