File size: 10,391 Bytes
0902a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import torch

from ldm.modules.midas.api import load_midas_transform
import albumentations
from torchvision import transforms
from PIL import Image
import numpy as np
from einops import rearrange
import cv2
from ldm.util import instantiate_from_config
from omegaconf import ListConfig
from open_clip.transform import ResizeMaxSize
class AddMiDaS(object):
    def __init__(self, model_type):
        super().__init__()
        self.transform = load_midas_transform(model_type)

    def pt2np(self, x):
        x = ((x + 1.0) * .5).detach().cpu().numpy()
        return x

    def np2pt(self, x):
        x = torch.from_numpy(x) * 2 - 1.
        return x

    def __call__(self, sample):
        # sample['jpg'] is tensor hwc in [-1, 1] at this point
        x = self.pt2np(sample['jpg'])
        x = self.transform({"image": x})["image"]
        sample['midas_in'] = x
        return sample

class new_process_im_base:
    def __init__(self, 
                 size = 512,
                 interpolation = 3, 
                 do_flip = True,
                 flip_p = 0.5,
                 hint_range_m11 = False,
                 ):
        self.do_flip = do_flip
        self.flip_p = flip_p
        self.rescale = transforms.Resize(size=size, interpolation=interpolation)
        if self.do_flip:
            self.flip = transforms.functional.hflip
        # base_tf [-1, 1]
        base_tf_m11 = [ transforms.ToTensor(), # to be checked
                        transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]
        self.base_tf_m11 = transforms.Compose(base_tf_m11)
        # base_tf [0, 1]
        base_tf_01 = [ transforms.ToTensor(), # to be checked
                        transforms.Lambda(lambda x: rearrange(x, 'c h w -> h w c'))]
        self.base_tf_01 = transforms.Compose(base_tf_01)
        self.hint_range_m11 = hint_range_m11

    def __call__(self, im, pos_info, im_hint = None):
        # im = Image.open(filename)
        im = im.convert("RGB")
        # crop
        size = im.size
        crop_size = min(size)
        crop_axis = size.index(crop_size)
        lf, up, rg, dn = pos_info
        if crop_axis == 0:
            # width
            box_up, box_dn = self.generate_range(up, dn, size[1], size[0])
            box_lf, box_rg = 0, size[0]
        else:
            box_lf, box_rg = self.generate_range(lf, rg, size[0], size[1])
            box_up, box_dn = 0, size[1]
        im = im.crop((box_lf, box_up, box_rg, box_dn))
        # rescale
        im = self.rescale(im)
        # 
        flip_img = False
        if self.do_flip:
            if torch.rand(1) < self.flip_p:
                im = self.flip(im)
                flip_img = True
        im = self.base_tf_m11(im)
        # im_hint = None
        # if hint_filename is not None:
            # im_hint = Image.open(hint_filename)
        if im_hint is not None:
            im_hint = im_hint.convert("RGB")
            im_hint = im_hint.crop((box_lf, box_up, box_rg, box_dn))
            im_hint = self.rescale(im_hint)
            if flip_img:
                im_hint = self.flip(im_hint)
            im_hint = self.base_tf_m11(im_hint) if self.hint_range_m11 else self.base_tf_01(im_hint)
        return im, im_hint

    def generate_range(self, low, high, len_max, len_min):
        mid = (low + high) / 2 * (len_max if high <= 1 else 1) 
        max_range = min(mid + len_min / 2, len_max)
        min_range = min(
            max(mid - len_min / 2, 0 ), 
            max(max_range - len_min, 0)
            )
        return int(min_range), int(min_range + len_min)

class new_process_im(new_process_im_base):
    def __call__(self, filename, pos_info, hint_filename = None):
        im = Image.open(filename) 
        if hint_filename is not None:
            im_hint = Image.open(hint_filename)
        else:
            im_hint = None
        return super().__call__(im, pos_info, im_hint)
        
class imagenet_process_im:
    def __init__(self, 
        size = 512,
        do_flip = False,
        min_crop_f=0.5, 
        max_crop_f=1., 
        flip_p=0.5,
        random_crop=False
            ):

        self.do_flip = do_flip
        if self.do_flip:
            self.flip = transforms.RandomHorizontalFlip(p=flip_p)
        # self.base = self.get_base()
    
        # self.size = size
        self.min_crop_f = min_crop_f
        self.max_crop_f = max_crop_f
        assert(max_crop_f <= 1.)
        self.center_crop = not random_crop
        self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
        self.size = size

    def __call__(self, im):
        im = im.convert("RGB")
        image = np.array(im).astype(np.uint8)
        # if image.shape[0] < self.size or image.shape[1] < self.size:
        #     return None
        # crop
        min_side_len = min(image.shape[:2])
        crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
        crop_side_len = int(crop_side_len)
        if self.center_crop:
            self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
        else:
            self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
        image = self.cropper(image=image)["image"] # ?
        # rescale
        image = self.image_rescaler(image=image)["image"]
        # flip
        if self.do_flip:
            image = self.flip(Image.fromarray(image))
            image = np.array(image).astype(np.uint8)
        return (image/127.5 - 1.0).astype(np.float32)
    
# used for CLIP image encoder
class process_wb_im:
    def __init__(self, 
        size = 224,
        # do_padding = True,
        image_transforms=[], 
        use_clip_resize=False,
        image_mean = None,
        image_std = None,
        exchange_channel = True, 
        ):
        self.image_rescaler = albumentations.LongestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
        self.image_size = size
        # self.do_padding = do_padding
        self.pad = albumentations.PadIfNeeded(min_height= self.image_size, min_width=self.image_size,
                                              border_mode=cv2.BORDER_CONSTANT, value= (255, 255, 255), 
                                              )
        if isinstance(image_transforms, ListConfig):
            image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
        image_transforms.extend([
            transforms.ToTensor(),
            transforms.Normalize(
                mean= image_mean if image_mean is not None else (0.48145466, 0.4578275, 0.40821073), 
                std= image_std if image_std is not None else (0.26862954, 0.26130258, 0.27577711)
                ),
                ])
            # transforms.Lambda(lambda x: rearrange(x, 'c h w -> h w c'))
            # ]) #  transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
        if exchange_channel:
            image_transforms.append(
                transforms.Lambda(lambda x: rearrange(x, 'c h w -> h w c'))
            )
        image_transforms = transforms.Compose(image_transforms)          
        self.tform = image_transforms
        self.use_clip_resize = use_clip_resize
        self.clip_resize = ResizeMaxSize(max_size = self.image_size, interpolation=transforms.InterpolationMode.BICUBIC, fill=(255, 255, 255))
        
    def __call__(self, im):
        im = im.convert("RGB")
        # if self.do_padding:
        #     im = self.padding_image(im)
        if self.use_clip_resize:
            im = self.clip_resize(im)
        else:
            im = self.padding_image(im)
        return self.tform(im)

    
    def padding_image(self, im):
        # resize 
        im = np.array(im).astype(np.uint8)
        im_rescaled = self.image_rescaler(image=im)["image"]
        # padding
        im_padded = self.pad(image=im_rescaled)["image"]
        return im_padded

# use for VQ-GAN
class vqgan_process_im:
    def __init__(self, size=384, random_crop=False, augment=False, ori_preprocessor = False, to_tensor=False):
        self.size = size
        self.random_crop = random_crop
        self.augment = augment
        assert self.size is not None and self.size > 0
        if ori_preprocessor:
            # if self.size is not None and self.size > 0:
            self.rescaler = albumentations.SmallestMaxSize(max_size = self.size)
            if not self.random_crop: # train
                self.cropper = albumentations.CenterCrop(height=self.size,width=self.size) 
            else: # test
                self.cropper = albumentations.RandomCrop(height=self.size,width=self.size)
            self.preprocessor = albumentations.Compose([self.rescaler, self.cropper])
            # else:
            #     self.preprocessor = lambda **kwargs: kwargs
        else:
            self.rescaler = albumentations.LongestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
            self.pad = albumentations.PadIfNeeded(min_height= self.size, min_width=self.size,
                                              border_mode=cv2.BORDER_CONSTANT, value= (255, 255, 255), 
                                              )
            self.preprocessor = albumentations.Compose([self.rescaler, self.pad])

        if self.augment: # train
            # Add data aug transformations
            self.data_augmentation = albumentations.Compose([
                albumentations.GaussianBlur(p=0.1),
                albumentations.OneOf([
                    albumentations.HueSaturationValue (p=0.3),
                    albumentations.ToGray(p=0.3),
                    albumentations.ChannelShuffle(p=0.3)
                ], p=0.3)
            ])
        
        if to_tensor:
            self.tform = transforms.ToTensor()
        self.to_tensor = to_tensor
        
        # if exchange_channel:
        #     self.exchange_channel = transforms.Lambda(lambda x: rearrange(x, 'c h w -> h w c'))

    def __call__(self, image):
        image = image.convert("RGB")
        image = np.array(image).astype(np.uint8)
        image = self.preprocessor(image=image)["image"]
        if self.augment:
            image = self.data_augmentation(image=image)['image']
        image = (image/127.5 - 1.0).astype(np.float32)
        if self.to_tensor:
            image = self.tform(image)
        return image