File size: 16,519 Bytes
0902a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import argparse, os
import cv2
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import nullcontext
from imwatermark import WatermarkEncoder

from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler

torch.set_grad_enabled(False)

def chunk(it, size):
    it = iter(it)
    return iter(lambda: tuple(islice(it, size)), ())


def load_model_from_config(config, ckpt, verbose=False, not_use_ckpt=False):
    print(f"Loading model from {ckpt}")
    pl_sd = torch.load(ckpt, map_location="cpu")
    if "global_step" in pl_sd:
        print(f"Global Step: {pl_sd['global_step']}")
    sd = pl_sd["state_dict"]

    if "model_ema.diffusion_modelinput_blocks00weight" not in sd:
        config.model.params.use_ema = False 
    model = instantiate_from_config(config.model)

    if not not_use_ckpt:
        m, u = model.load_state_dict(sd, strict=False)
        if len(m) > 0 and verbose:
            print("missing keys: {}".format(len(m)))
            print(m)
        if len(u) > 0 and verbose:
            print("unexpected keys: {}".format(len(u)))
            print(u)

    model.cuda()
    model.eval()
    return model


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--prompt",
        type=str,
        nargs="?",
        default="a professional photograph of an astronaut riding a triceratops",
        help="the prompt to render"
    )
    parser.add_argument(
        "--outdir",
        type=str,
        nargs="?",
        help="dir to write results to",
        default="outputs/txt2img-samples"
    )
    parser.add_argument(
        "--steps",
        type=int,
        default=50,
        help="number of ddim sampling steps",
    )
    parser.add_argument(
        "--plms",
        action='store_true',
        help="use plms sampling",
    )
    parser.add_argument(
        "--dpm",
        action='store_true',
        help="use DPM (2) sampler",
    )
    parser.add_argument(
        "--fixed_code",
        action='store_true',
        help="if enabled, uses the same starting code across all samples ",
    )
    parser.add_argument(
        "--ddim_eta",
        type=float,
        default=0.0,
        help="ddim eta (eta=0.0 corresponds to deterministic sampling",
    )
    parser.add_argument(
        "--n_iter",
        type=int,
        default=3,
        help="sample this often",
    )
    parser.add_argument(
        "--H",
        type=int,
        default=512,
        help="image height, in pixel space",
    )
    parser.add_argument(
        "--W",
        type=int,
        default=512,
        help="image width, in pixel space",
    )
    parser.add_argument(
        "--C",
        type=int,
        default=4,
        help="latent channels",
    )
    parser.add_argument(
        "--f",
        type=int,
        default=8,
        help="downsampling factor, most often 8 or 16",
    )
    parser.add_argument(
        "--n_samples",
        type=int,
        default=3,
        help="how many samples to produce for each given prompt. A.k.a batch size",
    )
    parser.add_argument(
        "--n_rows",
        type=int,
        default=0,
        help="rows in the grid (default: n_samples)",
    )
    parser.add_argument(
        "--scale",
        type=float,
        default=9.0,
        help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
    )
    parser.add_argument(
        "--from-file",
        type=str,
        help="if specified, load prompts from this file, separated by newlines",
    )
    parser.add_argument(
        "--config",
        type=str,
        default="configs/stable-diffusion/v2-inference.yaml",
        help="path to config which constructs model",
    )
    parser.add_argument(
        "--ckpt",
        type=str,
        help="path to checkpoint of model",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="the seed (for reproducible sampling)",
    )
    parser.add_argument(
        "--precision",
        type=str,
        help="evaluate at this precision",
        choices=["full", "autocast"],
        default="autocast"
    )
    parser.add_argument(
        "--repeat",
        type=int,
        default=1,
        help="repeat each prompt in file this often",
    )
    parser.add_argument(
        "--ckpt_folder",
        type=str,
        help="paths to checkpoints of model, if specified, use the checkpoints in the folder",
    )
    parser.add_argument(
        "--max_num_prompts",
        type=int,
        default=None,
        help="max num of the used prompts",
    )

    parser.add_argument(
        "--not_use_ckpt",
        action='store_true',
        help="whether to not use the ckpt",
    )
    parser.add_argument(
        "--spell_prompt_type",
        type=int,
        default=1,
        help="1: A sign with the word 'xxx' written on it; 2: A sign that says 'xxx'",
    )
    parser.add_argument(
        "--update",
        action='store_true',
        help="whether to update the existing generated images",
    )
    parser.add_argument(
        "--grams",
        type=int,
        default=1,
        help="How many grams (words or symbols) to form the to-be-rendered text (used for DrawSpelling Benchmark)",
    )
    parser.add_argument(
        "--save_form",
        type=str,
        help="the form of the saved images, png or pdf",
        # choices=["full", "autocast"],
        default="png"
    )
    parser.add_argument(
        "--verbose_all_prompts",
        action='store_true',
        help="whether to verbose all the prompts to the log",
    )
    return parser
    # opt = parser.parse_args()
    # return opt


def put_watermark(img, wm_encoder=None):
    if wm_encoder is not None:
        img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
        img = wm_encoder.encode(img, 'dwtDct')
        img = Image.fromarray(img[:, :, ::-1])
    return img


def main(opt):
    seed_everything(opt.seed)

    # batch_size = opt.n_samples
    # n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
    if not opt.from_file:
        prompt = opt.prompt
        print("the prompt is {}".format(prompt))
        assert prompt is not None
        batch_size = opt.n_samples if opt.n_samples>0 else 1
        data = [batch_size * [prompt]]
        outpath = os.path.join(
            opt.outdir,
            opt.prompt,
            os.path.splitext(os.path.basename(opt.ckpt))[0]
        )
    else:
        print(f"reading prompts from {opt.from_file}")
        with open(opt.from_file, "r") as f:
            data = f.read().splitlines()
            if "gram" in os.path.basename(opt.from_file):
                data = [item.split("\t")[0] for item in data]
            if opt.grams > 1:
                data = [" ".join(data[i:i + opt.grams]) for i in range(0, len(data), opt.grams)]
            if "DrawText_Spelling" in os.path.basename(opt.from_file) or "gram" in os.path.basename(opt.from_file):
                if opt.spell_prompt_type == 1:
                    data = ['A sign with the word "{}" written on it'.format(line.strip()) for line in data]
                elif opt.spell_prompt_type == 2:
                    data = ["A sign that says '{}'".format(line.strip()) for line in data]
                elif opt.spell_prompt_type == 20:
                    data = ['A sign that says "{}"'.format(line.strip()) for line in data]
                elif opt.spell_prompt_type == 3:
                    data = ["A whiteboard that says '{}'".format(line.strip()) for line in data]
                elif opt.spell_prompt_type == 30:
                    data = ['A whiteboard that says "{}"'.format(line.strip()) for line in data]
                else:
                    print("Only five types of prompt templates are supported currently")
                    raise ValueError
                if opt.verbose_all_prompts:
                    show_num = opt.max_num_prompts if (opt.max_num_prompts is not None and opt.max_num_prompts >0) else 10
                    for i in range(show_num):
                        print("embed the word into the prompt template for {} Benchmark: {}".format(
                            os.path.basename(opt.from_file), data[i])
                        )
                else:  
                    print("embed the word into the prompt template for {} Benchmark: e.g., {}".format(
                        os.path.basename(opt.from_file), data[0])
                        )
            if opt.max_num_prompts is not None and opt.max_num_prompts >0:
                print("only use {} prompts to test the model".format(opt.max_num_prompts))
                data = data[:opt.max_num_prompts]
            data = [p for p in data for i in range(opt.repeat)]
            batch_size = opt.n_samples if opt.n_samples>0 else len(data)
            data = list(chunk(data, batch_size))
        outpath = os.path.join(
            opt.outdir,
            os.path.splitext(os.path.basename(opt.from_file))[0] 
            + ("_{}_{}_gram".format(opt.spell_prompt_type, opt.grams) if "DrawText_Spelling" in os.path.basename(opt.from_file) else ""),
            os.path.splitext(os.path.basename(opt.ckpt))[0]
        )
    n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
    if os.path.exists(outpath):
        if not opt.update:
            print("{} already exists and we will not update it".format(outpath))
            return
        else:
            print("{} already exists but we will update it".format(outpath))
    os.makedirs(outpath, exist_ok=True)
    sample_path = os.path.join(outpath, "samples")
    os.makedirs(sample_path, exist_ok=True)
    save_form = opt.save_form
    sample_count = 0
    sample_limit = 15 #20 #10

    base_count = len(os.listdir(sample_path))
    grid_count = len(os.listdir(outpath)) - 1

    config = OmegaConf.load(f"{opt.config}")
    model = load_model_from_config(config, f"{opt.ckpt}", verbose=True, not_use_ckpt=opt.not_use_ckpt)

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    model = model.to(device)

    if opt.plms:
        sampler = PLMSSampler(model)
    elif opt.dpm:
        # DPM-Solver
        sampler = DPMSolverSampler(model)
    else:
        sampler = DDIMSampler(model)
    
    # os.makedirs(opt.outdir, exist_ok=True)
    # outpath = opt.outdir

    print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
    wm = "SDV2"
    wm_encoder = WatermarkEncoder()
    wm_encoder.set_watermark('bytes', wm.encode('utf-8'))

    start_code = None
    if opt.fixed_code:
        start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
    
    print("precison strategy: {}".format(opt.precision))
    precision_scope = autocast if opt.precision == "autocast" else nullcontext
    with torch.no_grad(), \
        precision_scope("cuda"), \
        model.ema_scope("Sampling on Benchmark Prompts"):
            all_samples = list()
            for n in trange(opt.n_iter, desc="Sampling"):
                for prompts in tqdm(data, desc="data"):
                    uc = None
                    batch_size_real = len(prompts)
                    if opt.scale != 1.0: # classifier-free guidance
                        uc = model.get_learned_conditioning(batch_size_real * [""])
                    if isinstance(prompts, tuple):
                        prompts = list(prompts)
                    # prompt
                    c = model.get_learned_conditioning(prompts)
                    shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
                    samples, _ = sampler.sample(S=opt.steps,
                                                     conditioning=c,
                                                     batch_size=batch_size_real, #opt.n_samples,
                                                     shape=shape,
                                                     verbose=False, #False,
                                                     unconditional_guidance_scale=opt.scale,
                                                     unconditional_conditioning=uc,
                                                     eta=opt.ddim_eta,
                                                     x_T=start_code)

                    x_samples = model.decode_first_stage(samples)
                    x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
                    # from [-1,1] to [0,1]
                    for x_sample in x_samples:
                        x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
                        img = Image.fromarray(x_sample.astype(np.uint8))
                        img = put_watermark(img, wm_encoder)
                        img.save(os.path.join(sample_path, f"{base_count:05}.png"))
                        base_count += 1
                        sample_count += 1
                    if len(x_samples) != batch_size: #opt.n_samples:
                        x_samples = torch.concat(
                            [x_samples, torch.ones(
                                (batch_size - len(x_samples), ) + x_samples.shape[1:]
                            ).to(x_samples.device)], dim=0
                        )
                    all_samples.append(x_samples)
                if sample_count >= sample_limit and len(all_samples):
                    grid_count = save_imgs_as_grid(all_samples, n_rows, wm_encoder, outpath, grid_count, save_form=save_form)
                    all_samples = []
                    sample_count = 0

            if len(all_samples):
                grid_count = save_imgs_as_grid(all_samples, n_rows, wm_encoder, outpath, grid_count, save_form=save_form)
                
    print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
          f" \nEnjoy.")

def save_imgs_as_grid(all_samples, n_rows, wm_encoder, outpath, grid_count, save_form="png"):
    # additionally, save as grid
    grid = torch.stack(all_samples, 0)
    grid = rearrange(grid, 'n b c h w -> (n b) c h w')
    grid = make_grid(grid, nrow=n_rows)

    # to image
    grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
    grid = Image.fromarray(grid.astype(np.uint8))
    grid = put_watermark(grid, wm_encoder)
    grid.save(os.path.join(outpath, f'grid-{grid_count:04}.{save_form}'))
    grid_count += 1
    return grid_count

if __name__ == "__main__":
    import os
    from glob import glob
    if not os.path.basename(os.getcwd()) == "stablediffusion":
        os.chdir(os.path.join(os.getcwd(), "stablediffusion"))
        print(os.getcwd()) 
    parser = parse_args()
    opt = parser.parse_args()
    # ckpt_list = ["epoch=000047-step=000148999.ckpt"]
    # ckpt_list = ["epoch=000005-step=000015999.ckpt"]
    ckpt_list = [
        "epoch=000000-step=000000999.ckpt",
        "epoch=000004-step=000012999.ckpt",
        "epoch=000007-step=000024999.ckpt",
        "epoch=000012-step=000037999.ckpt",
        "epoch=000015-step=000048999.ckpt",
        "epoch=000016-step=000050999.ckpt",
        "epoch=000020-step=000062999.ckpt",
        "epoch=000023-step=000074999.ckpt",
        "epoch=000027-step=000086999.ckpt",
        "epoch=000031-step=000097999.ckpt",
        "epoch=000031-step=000099999.ckpt", 
        "epoch=000032-step=000100999.ckpt",
        "epoch=000039-step=000124999.ckpt",
        "epoch=000047-step=000149999.ckpt", 
        "epoch=000063-step=000199999.ckpt"
        ]
    # ckpt_list = ["epoch=000005-step=000003999.ckpt", "epoch=000007-step=000004999.ckpt"]
    # ckpt_list = ["epoch=000007-step=000009999.ckpt", "epoch=000000-step=000000999.ckpt", "epoch=000014-step=000019999.ckpt"]
    if opt.ckpt_folder is not None:
        for ckpt in glob(opt.ckpt_folder + "/*.ckpt"):
            if os.path.basename(ckpt) not in ckpt_list:
                continue
            opt.ckpt = ckpt
            try:
                main(opt)
            except:
                continue
    else:
        try:
            main(opt)
        except:
            raise ValueError