Spaces:
Runtime error
Runtime error
File size: 16,519 Bytes
0902a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
import argparse, os
import cv2
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import nullcontext
from imwatermark import WatermarkEncoder
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
torch.set_grad_enabled(False)
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(config, ckpt, verbose=False, not_use_ckpt=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
if "model_ema.diffusion_modelinput_blocks00weight" not in sd:
config.model.params.use_ema = False
model = instantiate_from_config(config.model)
if not not_use_ckpt:
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys: {}".format(len(m)))
print(m)
if len(u) > 0 and verbose:
print("unexpected keys: {}".format(len(u)))
print(u)
model.cuda()
model.eval()
return model
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a professional photograph of an astronaut riding a triceratops",
help="the prompt to render"
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
default="outputs/txt2img-samples"
)
parser.add_argument(
"--steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
parser.add_argument(
"--dpm",
action='store_true',
help="use DPM (2) sampler",
)
parser.add_argument(
"--fixed_code",
action='store_true',
help="if enabled, uses the same starting code across all samples ",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=3,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor, most often 8 or 16",
)
parser.add_argument(
"--n_samples",
type=int,
default=3,
help="how many samples to produce for each given prompt. A.k.a batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=9.0,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file, separated by newlines",
)
parser.add_argument(
"--config",
type=str,
default="configs/stable-diffusion/v2-inference.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--ckpt",
type=str,
help="path to checkpoint of model",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast"
)
parser.add_argument(
"--repeat",
type=int,
default=1,
help="repeat each prompt in file this often",
)
parser.add_argument(
"--ckpt_folder",
type=str,
help="paths to checkpoints of model, if specified, use the checkpoints in the folder",
)
parser.add_argument(
"--max_num_prompts",
type=int,
default=None,
help="max num of the used prompts",
)
parser.add_argument(
"--not_use_ckpt",
action='store_true',
help="whether to not use the ckpt",
)
parser.add_argument(
"--spell_prompt_type",
type=int,
default=1,
help="1: A sign with the word 'xxx' written on it; 2: A sign that says 'xxx'",
)
parser.add_argument(
"--update",
action='store_true',
help="whether to update the existing generated images",
)
parser.add_argument(
"--grams",
type=int,
default=1,
help="How many grams (words or symbols) to form the to-be-rendered text (used for DrawSpelling Benchmark)",
)
parser.add_argument(
"--save_form",
type=str,
help="the form of the saved images, png or pdf",
# choices=["full", "autocast"],
default="png"
)
parser.add_argument(
"--verbose_all_prompts",
action='store_true',
help="whether to verbose all the prompts to the log",
)
return parser
# opt = parser.parse_args()
# return opt
def put_watermark(img, wm_encoder=None):
if wm_encoder is not None:
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
img = wm_encoder.encode(img, 'dwtDct')
img = Image.fromarray(img[:, :, ::-1])
return img
def main(opt):
seed_everything(opt.seed)
# batch_size = opt.n_samples
# n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
if not opt.from_file:
prompt = opt.prompt
print("the prompt is {}".format(prompt))
assert prompt is not None
batch_size = opt.n_samples if opt.n_samples>0 else 1
data = [batch_size * [prompt]]
outpath = os.path.join(
opt.outdir,
opt.prompt,
os.path.splitext(os.path.basename(opt.ckpt))[0]
)
else:
print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
if "gram" in os.path.basename(opt.from_file):
data = [item.split("\t")[0] for item in data]
if opt.grams > 1:
data = [" ".join(data[i:i + opt.grams]) for i in range(0, len(data), opt.grams)]
if "DrawText_Spelling" in os.path.basename(opt.from_file) or "gram" in os.path.basename(opt.from_file):
if opt.spell_prompt_type == 1:
data = ['A sign with the word "{}" written on it'.format(line.strip()) for line in data]
elif opt.spell_prompt_type == 2:
data = ["A sign that says '{}'".format(line.strip()) for line in data]
elif opt.spell_prompt_type == 20:
data = ['A sign that says "{}"'.format(line.strip()) for line in data]
elif opt.spell_prompt_type == 3:
data = ["A whiteboard that says '{}'".format(line.strip()) for line in data]
elif opt.spell_prompt_type == 30:
data = ['A whiteboard that says "{}"'.format(line.strip()) for line in data]
else:
print("Only five types of prompt templates are supported currently")
raise ValueError
if opt.verbose_all_prompts:
show_num = opt.max_num_prompts if (opt.max_num_prompts is not None and opt.max_num_prompts >0) else 10
for i in range(show_num):
print("embed the word into the prompt template for {} Benchmark: {}".format(
os.path.basename(opt.from_file), data[i])
)
else:
print("embed the word into the prompt template for {} Benchmark: e.g., {}".format(
os.path.basename(opt.from_file), data[0])
)
if opt.max_num_prompts is not None and opt.max_num_prompts >0:
print("only use {} prompts to test the model".format(opt.max_num_prompts))
data = data[:opt.max_num_prompts]
data = [p for p in data for i in range(opt.repeat)]
batch_size = opt.n_samples if opt.n_samples>0 else len(data)
data = list(chunk(data, batch_size))
outpath = os.path.join(
opt.outdir,
os.path.splitext(os.path.basename(opt.from_file))[0]
+ ("_{}_{}_gram".format(opt.spell_prompt_type, opt.grams) if "DrawText_Spelling" in os.path.basename(opt.from_file) else ""),
os.path.splitext(os.path.basename(opt.ckpt))[0]
)
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
if os.path.exists(outpath):
if not opt.update:
print("{} already exists and we will not update it".format(outpath))
return
else:
print("{} already exists but we will update it".format(outpath))
os.makedirs(outpath, exist_ok=True)
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
save_form = opt.save_form
sample_count = 0
sample_limit = 15 #20 #10
base_count = len(os.listdir(sample_path))
grid_count = len(os.listdir(outpath)) - 1
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, f"{opt.ckpt}", verbose=True, not_use_ckpt=opt.not_use_ckpt)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
if opt.plms:
sampler = PLMSSampler(model)
elif opt.dpm:
# DPM-Solver
sampler = DPMSolverSampler(model)
else:
sampler = DDIMSampler(model)
# os.makedirs(opt.outdir, exist_ok=True)
# outpath = opt.outdir
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
wm = "SDV2"
wm_encoder = WatermarkEncoder()
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
start_code = None
if opt.fixed_code:
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
print("precison strategy: {}".format(opt.precision))
precision_scope = autocast if opt.precision == "autocast" else nullcontext
with torch.no_grad(), \
precision_scope("cuda"), \
model.ema_scope("Sampling on Benchmark Prompts"):
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
uc = None
batch_size_real = len(prompts)
if opt.scale != 1.0: # classifier-free guidance
uc = model.get_learned_conditioning(batch_size_real * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
# prompt
c = model.get_learned_conditioning(prompts)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples, _ = sampler.sample(S=opt.steps,
conditioning=c,
batch_size=batch_size_real, #opt.n_samples,
shape=shape,
verbose=False, #False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code)
x_samples = model.decode_first_stage(samples)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
# from [-1,1] to [0,1]
for x_sample in x_samples:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
img = Image.fromarray(x_sample.astype(np.uint8))
img = put_watermark(img, wm_encoder)
img.save(os.path.join(sample_path, f"{base_count:05}.png"))
base_count += 1
sample_count += 1
if len(x_samples) != batch_size: #opt.n_samples:
x_samples = torch.concat(
[x_samples, torch.ones(
(batch_size - len(x_samples), ) + x_samples.shape[1:]
).to(x_samples.device)], dim=0
)
all_samples.append(x_samples)
if sample_count >= sample_limit and len(all_samples):
grid_count = save_imgs_as_grid(all_samples, n_rows, wm_encoder, outpath, grid_count, save_form=save_form)
all_samples = []
sample_count = 0
if len(all_samples):
grid_count = save_imgs_as_grid(all_samples, n_rows, wm_encoder, outpath, grid_count, save_form=save_form)
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
f" \nEnjoy.")
def save_imgs_as_grid(all_samples, n_rows, wm_encoder, outpath, grid_count, save_form="png"):
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
grid = make_grid(grid, nrow=n_rows)
# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
grid = Image.fromarray(grid.astype(np.uint8))
grid = put_watermark(grid, wm_encoder)
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.{save_form}'))
grid_count += 1
return grid_count
if __name__ == "__main__":
import os
from glob import glob
if not os.path.basename(os.getcwd()) == "stablediffusion":
os.chdir(os.path.join(os.getcwd(), "stablediffusion"))
print(os.getcwd())
parser = parse_args()
opt = parser.parse_args()
# ckpt_list = ["epoch=000047-step=000148999.ckpt"]
# ckpt_list = ["epoch=000005-step=000015999.ckpt"]
ckpt_list = [
"epoch=000000-step=000000999.ckpt",
"epoch=000004-step=000012999.ckpt",
"epoch=000007-step=000024999.ckpt",
"epoch=000012-step=000037999.ckpt",
"epoch=000015-step=000048999.ckpt",
"epoch=000016-step=000050999.ckpt",
"epoch=000020-step=000062999.ckpt",
"epoch=000023-step=000074999.ckpt",
"epoch=000027-step=000086999.ckpt",
"epoch=000031-step=000097999.ckpt",
"epoch=000031-step=000099999.ckpt",
"epoch=000032-step=000100999.ckpt",
"epoch=000039-step=000124999.ckpt",
"epoch=000047-step=000149999.ckpt",
"epoch=000063-step=000199999.ckpt"
]
# ckpt_list = ["epoch=000005-step=000003999.ckpt", "epoch=000007-step=000004999.ckpt"]
# ckpt_list = ["epoch=000007-step=000009999.ckpt", "epoch=000000-step=000000999.ckpt", "epoch=000014-step=000019999.ckpt"]
if opt.ckpt_folder is not None:
for ckpt in glob(opt.ckpt_folder + "/*.ckpt"):
if os.path.basename(ckpt) not in ckpt_list:
continue
opt.ckpt = ckpt
try:
main(opt)
except:
continue
else:
try:
main(opt)
except:
raise ValueError
|