File size: 19,280 Bytes
0902a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import torch
import torch.nn.functional as F
import pytorch_lightning as pl

from main import instantiate_from_config

from taming.modules.diffusionmodules.model import Encoder, Decoder
# #
# from ldm.modules.diffusionmodules.model import Encoder, Decoder
# #
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
from taming.modules.vqvae.quantize import GumbelQuantize
from taming.modules.vqvae.quantize import EMAVectorQuantizer

import numpy as np
import os
from PIL import Image

# TODO: support xformer
class VQModel(pl.LightningModule):
    def __init__(self,
                 ddconfig,
                 lossconfig,
                 n_embed,
                 embed_dim,
                 ckpt_path=None,
                 ignore_keys=[],
                 image_key="image",
                 colorize_nlabels=None,
                 monitor=None,
                 remap=None,
                 sane_index_shape=False,  # tell vector quantizer to return indices as bhw
                 freeze = False, 
                 ):
        super().__init__()
        self.image_key = image_key
        self.encoder = Encoder(**ddconfig)
        self.decoder = Decoder(**ddconfig)
        self.loss = instantiate_from_config(lossconfig)
        self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
                                        remap=remap, sane_index_shape=sane_index_shape)
        self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
        self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
        self.ckpt_path = ckpt_path
        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
        self.image_key = image_key
        if colorize_nlabels is not None:
            assert type(colorize_nlabels)==int
            self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
        if monitor is not None:
            self.monitor = monitor
        # add 
        self.embed_dim = embed_dim
        self.freeze_model = freeze

    def init_from_ckpt(self, path, ignore_keys=list()):
        sd = torch.load(path, map_location="cpu")["state_dict"]
        keys = list(sd.keys())
        for k in keys:
            for ik in ignore_keys:
                if k.startswith(ik):
                    print("Deleting key {} from state_dict.".format(k))
                    del sd[k]
        # change
        missing, unexpected = self.load_state_dict(sd, strict=False)
        print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
        if len(missing) > 0:
            print(f"Missing Keys: {missing}")
            print(f"Unexpected Keys: {unexpected}")
        # self.load_state_dict(sd, strict=False)
        # print(f"Restored from {path}")

    def encode(self, x):
        h = self.encoder(x)
        h = self.quant_conv(h)
        quant, emb_loss, info = self.quantize(h)
        return quant, emb_loss, info

    def decode(self, quant):
        quant = self.post_quant_conv(quant)
        dec = self.decoder(quant)
        return dec

    def decode_code(self, code_b):
        quant_b = self.quantize.embed_code(code_b)
        dec = self.decode(quant_b)
        return dec

    def forward(self, input):
        quant, diff, _ = self.encode(input)
        dec = self.decode(quant)
        return dec, diff

    def get_input(self, batch, k):
        x = batch[k]
        if len(x.shape) == 3:
            x = x[..., None]
        x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format)
        return x.float()

    def training_step(self, batch, batch_idx, optimizer_idx):
        x = self.get_input(batch, self.image_key)
        xrec, qloss = self(x)

        if optimizer_idx == 0:
            # autoencode
            aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
                                            last_layer=self.get_last_layer(), split="train")

            self.log("train/aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
            self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
            
            return aeloss

        if optimizer_idx == 1:
            # discriminator
            discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
                                            last_layer=self.get_last_layer(), split="train")
            self.log("train/discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
            self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
            return discloss

    def validation_step(self, batch, batch_idx):
        x = self.get_input(batch, self.image_key)
        xrec, qloss = self(x)
        aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, self.global_step,
                                            last_layer=self.get_last_layer(), split="val")

        discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, self.global_step,
                                            last_layer=self.get_last_layer(), split="val")
        rec_loss = log_dict_ae["val/rec_loss"]
        self.log("val/rec_loss", rec_loss,
                   prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True)
        self.log("val/aeloss", aeloss,
                   prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True)
        return self.log_dict

    def test_step(self, batch, batch_idx):
        x = self.get_input(batch, self.image_key)
        xrec, qloss = self(x)

        _, log_dict = self.loss(qloss, x, xrec, 0, self.global_step,
                                            last_layer=self.get_last_layer(), split="test")

        # Compute and Store reconstructions
        im_rec = xrec.detach().cpu()
        im_rec = torch.clamp(im_rec, -1., 1.) 
        im_rec = (im_rec+1.0)/2.0 # -1,1 -> 0,1; c,h,w
        im_rec = im_rec.transpose(1, 2).transpose(2, 3)
        im_rec = im_rec.numpy()
        im_rec = (im_rec*255).astype(np.uint8)

        for k in range(im_rec.shape[0]):
            filename = f"reconstruction_batch_{batch_idx}_id_{k}.png"
            path = os.path.join(self.trainer.logdir, 'evaluation', filename)
            im = im_rec[k]
            Image.fromarray(im).save(path)

        # Compute LPIPS
        LPIPS = log_dict["test/p_loss"]
        try:
            OCR_loss = log_dict["test/p_ocr_loss"]
        except:
            OCR_loss= 0.0


        output = dict({
            'LPIPS': LPIPS,
            'OCR_loss': OCR_loss
        })
        self.log_dict(output)
        return output

    def configure_optimizers(self):
        lr = self.learning_rate
        opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
                                  list(self.decoder.parameters())+
                                  list(self.quantize.parameters())+
                                  list(self.quant_conv.parameters())+
                                  list(self.post_quant_conv.parameters()),
                                  lr=lr, betas=(0.5, 0.9))
        opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
                                    lr=lr, betas=(0.5, 0.9))
        return [opt_ae, opt_disc], []

    def get_last_layer(self):
        return self.decoder.conv_out.weight

    def log_images(self, batch, **kwargs):
        log = dict()
        x = self.get_input(batch, self.image_key)
        x = x.to(self.device)
        xrec, _ = self(x)
        if x.shape[1] > 3:
            # colorize with random projection
            assert xrec.shape[1] > 3
            x = self.to_rgb(x)
            xrec = self.to_rgb(xrec)
        log["inputs"] = x
        log["reconstructions"] = xrec
        return log

    def to_rgb(self, x):
        assert self.image_key == "segmentation"
        if not hasattr(self, "colorize"):
            self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
        x = F.conv2d(x, weight=self.colorize)
        x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
        return x

# adapted from LDM
class VQModelInterfaceEncoder(VQModel):
    def __init__(self, embed_dim, *args, **kwargs):
        super().__init__(embed_dim=embed_dim, *args, **kwargs)
        self.embed_dim = embed_dim
        del self.decoder
        del self.post_quant_conv

    def encode(self, x):
        h = self.encoder(x)
        h = self.quant_conv(h)
        return h

    # def decode(self, h, force_not_quantize=False):
    #     # also go through quantization layer
    #     if not force_not_quantize:
    #         quant, emb_loss, info = self.quantize(h)
    #     else:
    #         quant = h
    #     quant = self.post_quant_conv(quant)
    #     dec = self.decoder(quant)
    #     return dec
    
    def forward(self, x):
        return self.encode(x)



class VQSegmentationModel(VQModel):
    def __init__(self, n_labels, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.register_buffer("colorize", torch.randn(3, n_labels, 1, 1))

    def configure_optimizers(self):
        lr = self.learning_rate
        opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
                                  list(self.decoder.parameters())+
                                  list(self.quantize.parameters())+
                                  list(self.quant_conv.parameters())+
                                  list(self.post_quant_conv.parameters()),
                                  lr=lr, betas=(0.5, 0.9))
        return opt_ae

    def training_step(self, batch, batch_idx):
        x = self.get_input(batch, self.image_key)
        xrec, qloss = self(x)
        aeloss, log_dict_ae = self.loss(qloss, x, xrec, split="train")
        self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
        return aeloss

    def validation_step(self, batch, batch_idx):
        x = self.get_input(batch, self.image_key)
        xrec, qloss = self(x)
        aeloss, log_dict_ae = self.loss(qloss, x, xrec, split="val")
        self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
        total_loss = log_dict_ae["val/total_loss"]
        self.log("val/total_loss", total_loss,
                 prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True)
        return aeloss

    @torch.no_grad()
    def log_images(self, batch, **kwargs):
        log = dict()
        x = self.get_input(batch, self.image_key)
        x = x.to(self.device)
        xrec, _ = self(x)
        if x.shape[1] > 3:
            # colorize with random projection
            assert xrec.shape[1] > 3
            # convert logits to indices
            xrec = torch.argmax(xrec, dim=1, keepdim=True)
            xrec = F.one_hot(xrec, num_classes=x.shape[1])
            xrec = xrec.squeeze(1).permute(0, 3, 1, 2).float()
            x = self.to_rgb(x)
            xrec = self.to_rgb(xrec)
        log["inputs"] = x
        log["reconstructions"] = xrec
        return log


class VQNoDiscModel(VQModel):
    def __init__(self,
                 ddconfig,
                 lossconfig,
                 n_embed,
                 embed_dim,
                 ckpt_path=None,
                 ignore_keys=[],
                 image_key="image",
                 colorize_nlabels=None
                 ):
        super().__init__(ddconfig=ddconfig, lossconfig=lossconfig, n_embed=n_embed, embed_dim=embed_dim,
                         ckpt_path=ckpt_path, ignore_keys=ignore_keys, image_key=image_key,
                         colorize_nlabels=colorize_nlabels)

    def training_step(self, batch, batch_idx):
        x = self.get_input(batch, self.image_key)
        xrec, qloss = self(x)
        # autoencode
        aeloss, log_dict_ae = self.loss(qloss, x, xrec, self.global_step, split="train")
        output = pl.TrainResult(minimize=aeloss)
        output.log("train/aeloss", aeloss,
                   prog_bar=True, logger=True, on_step=True, on_epoch=True)
        output.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
        return output

    def validation_step(self, batch, batch_idx):
        x = self.get_input(batch, self.image_key)
        xrec, qloss = self(x)
        aeloss, log_dict_ae = self.loss(qloss, x, xrec, self.global_step, split="val")
        rec_loss = log_dict_ae["val/rec_loss"]
        output = pl.EvalResult(checkpoint_on=rec_loss)
        output.log("val/rec_loss", rec_loss,
                   prog_bar=True, logger=True, on_step=True, on_epoch=True)
        output.log("val/aeloss", aeloss,
                   prog_bar=True, logger=True, on_step=True, on_epoch=True)
        output.log_dict(log_dict_ae)

        return output

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(list(self.encoder.parameters())+
                                  list(self.decoder.parameters())+
                                  list(self.quantize.parameters())+
                                  list(self.quant_conv.parameters())+
                                  list(self.post_quant_conv.parameters()),
                                  lr=self.learning_rate, betas=(0.5, 0.9))
        return optimizer


class GumbelVQ(VQModel):
    def __init__(self,
                 ddconfig,
                 lossconfig,
                 n_embed,
                 embed_dim,
                 temperature_scheduler_config,
                 ckpt_path=None,
                 ignore_keys=[],
                 image_key="image",
                 colorize_nlabels=None,
                 monitor=None,
                 kl_weight=1e-8,
                 remap=None,
                 ):

        z_channels = ddconfig["z_channels"]
        super().__init__(ddconfig,
                         lossconfig,
                         n_embed,
                         embed_dim,
                         ckpt_path=None,
                         ignore_keys=ignore_keys,
                         image_key=image_key,
                         colorize_nlabels=colorize_nlabels,
                         monitor=monitor,
                         )

        self.loss.n_classes = n_embed
        self.vocab_size = n_embed

        self.quantize = GumbelQuantize(z_channels, embed_dim,
                                       n_embed=n_embed,
                                       kl_weight=kl_weight, temp_init=1.0,
                                       remap=remap)

        self.temperature_scheduler = instantiate_from_config(temperature_scheduler_config)   # annealing of temp

        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)

    def temperature_scheduling(self):
        self.quantize.temperature = self.temperature_scheduler(self.global_step)

    def encode_to_prequant(self, x):
        h = self.encoder(x)
        h = self.quant_conv(h)
        return h

    def decode_code(self, code_b):
        raise NotImplementedError

    def training_step(self, batch, batch_idx, optimizer_idx):
        self.temperature_scheduling()
        x = self.get_input(batch, self.image_key)
        xrec, qloss = self(x)

        if optimizer_idx == 0:
            # autoencode
            aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
                                            last_layer=self.get_last_layer(), split="train")

            self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
            self.log("temperature", self.quantize.temperature, prog_bar=False, logger=True, on_step=True, on_epoch=True)
            return aeloss

        if optimizer_idx == 1:
            # discriminator
            discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
                                            last_layer=self.get_last_layer(), split="train")
            self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
            return discloss

    def validation_step(self, batch, batch_idx):
        x = self.get_input(batch, self.image_key)
        xrec, qloss = self(x, return_pred_indices=True)
        aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, self.global_step,
                                        last_layer=self.get_last_layer(), split="val")

        discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, self.global_step,
                                            last_layer=self.get_last_layer(), split="val")
        rec_loss = log_dict_ae["val/rec_loss"]
        self.log("val/rec_loss", rec_loss,
                 prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
        self.log("val/aeloss", aeloss,
                 prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
        self.log_dict(log_dict_ae)
        self.log_dict(log_dict_disc)
        return self.log_dict

    def log_images(self, batch, **kwargs):
        log = dict()
        x = self.get_input(batch, self.image_key)
        x = x.to(self.device)
        # encode
        h = self.encoder(x)
        h = self.quant_conv(h)
        quant, _, _ = self.quantize(h)
        # decode
        x_rec = self.decode(quant)
        log["inputs"] = x
        log["reconstructions"] = x_rec
        return log


class EMAVQ(VQModel):
    def __init__(self,
                 ddconfig,
                 lossconfig,
                 n_embed,
                 embed_dim,
                 ckpt_path=None,
                 ignore_keys=[],
                 image_key="image",
                 colorize_nlabels=None,
                 monitor=None,
                 remap=None,
                 sane_index_shape=False,  # tell vector quantizer to return indices as bhw
                 ):
        super().__init__(ddconfig,
                         lossconfig,
                         n_embed,
                         embed_dim,
                         ckpt_path=None,
                         ignore_keys=ignore_keys,
                         image_key=image_key,
                         colorize_nlabels=colorize_nlabels,
                         monitor=monitor,
                         )
        self.quantize = EMAVectorQuantizer(n_embed=n_embed,
                                           embedding_dim=embed_dim,
                                           beta=0.25,
                                           remap=remap)
    def configure_optimizers(self):
        lr = self.learning_rate
        #Remove self.quantize from parameter list since it is updated via EMA
        opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
                                  list(self.decoder.parameters())+
                                  list(self.quant_conv.parameters())+
                                  list(self.post_quant_conv.parameters()),
                                  lr=lr, betas=(0.5, 0.9))
        opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
                                    lr=lr, betas=(0.5, 0.9))
        return [opt_ae, opt_disc], []