File size: 9,656 Bytes
0902a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch.nn as nn
from ldm.modules.encoders.modules import OpenCLIPImageEmbedder, FrozenOpenCLIPEmbedder
from ldm.util import instantiate_from_config
import torch
from taming.models.vqgan import VQModelInterfaceEncoder, VQModel
from ldm.modules.attention import SpatialTransformer
from ldm.modules.attention import  Normalize, BasicTransformerBlock#, exists
from ldm.modules.diffusionmodules.util import zero_module, identity_init_fc, conv_nd
from einops import rearrange
# from ldm.modules.diffusionmodules.openaimodel import TimestepEmbedSequential
def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    return self



def make_zero_conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
    return zero_module(conv_nd(2, in_channels, out_channels, kernel_size, stride=stride, padding=padding))


class SpatialTransformer_v2(nn.Module):
    """
    Transformer block for image-like data.
    First, project the input (aka embedding)
    and reshape to b, t, d.
    Then apply standard transformer action.
    Finally, reshape to image
    NEW: use_linear for more efficiency instead of the 1x1 convs
    """
    def __init__(self, in_channels, n_heads, d_head,
                 depth=1, dropout=0., context_dim=None,
                 disable_self_attn=False, use_linear=False,
                 use_checkpoint=True):
        super().__init__()
        # change:
        # if exists(context_dim) and not isinstance(context_dim, list):
        if not isinstance(context_dim, list):
            context_dim = [context_dim]
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = Normalize(in_channels)
        if not use_linear:
            self.proj_in = nn.Conv2d(in_channels,
                                     inner_dim,
                                     kernel_size=1,
                                     stride=1,
                                     padding=0)
        else:
            self.proj_in = nn.Linear(in_channels, inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
                                   disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
                for d in range(depth)]
        )
        if not use_linear:
            self.proj_out = zero_module(nn.Conv2d(inner_dim,
                                                  in_channels,
                                                  kernel_size=1,
                                                  stride=1,
                                                  padding=0))
        else:
            self.proj_out = zero_module(nn.Linear(inner_dim, in_channels)) # change: switch
        self.use_linear = use_linear

    def forward(self, x, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        if not isinstance(context, list):
            context = [context]
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        if not self.use_linear:
            x = self.proj_in(x)
        x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
        if self.use_linear:
            x = self.proj_in(x)
        for i, block in enumerate(self.transformer_blocks):
            x = block(x, context=context[i])
        if self.use_linear:
            x = self.proj_out(x)
        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
        if not self.use_linear:
            x = self.proj_out(x)
        return x + x_in

class trans_glyph_emb(nn.Module):
    def __init__(self, 
        type = "fc", # "conv", "attn"
        input_dim = 256,
        out_dim = 1024,
        # fc
        fc_init = "zero",
        # conv/attn
        conv_ks = 3,
        conv_pad = 1,
        conv_stride = 1,
        # attn
        ch = 512, # 1024 
        num_heads = 8, # 16
        dim_head = 64,
        use_linear_in_transformer = True,
        use_checkpoint = False, #True,
    ):
        super().__init__()
        
        if type == "fc":
            self.model = torch.nn.Linear(input_dim, out_dim)
            if fc_init == "zero":
                self.model = zero_module(self.model)
            elif fc_init == "identity":
                self.model = identity_init_fc(self.model)
        elif type == "conv":
            self.model = make_zero_conv(input_dim, out_dim, conv_ks, stride = conv_stride, padding = conv_pad)
        elif type == "attn":
            model = [
                # nn.Conv2d(input_dim, ch, 3, stride = 1, padding = 1),
                nn.Conv2d(input_dim, ch, conv_ks, stride = conv_stride, padding = conv_pad),
                SpatialTransformer_v2( #SpatialTransformer(
                                    ch, num_heads, dim_head, depth=1, context_dim=None, #ch,
                                    disable_self_attn=False, use_linear=use_linear_in_transformer,
                                    use_checkpoint=use_checkpoint, # False if the context is None
                                ),
                make_zero_conv(ch, out_dim, 1, stride = 1, padding = 0)
                # make_zero_conv(ch, out_dim, conv_ks, stride = conv_stride, padding = conv_pad)
            ]
            self.model = nn.Sequential(*model)
        self.model_type = type
    
    def forward(self, x):
        if self.model_type == "fc":
            # b, c, h, w = x.shape
            x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
            x = self.model(x)
            # x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
            # return x
        else:
            x = self.model(x)
            x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
        return x
    


class glyph_control(nn.Module):
    def __init__(self,
    image_encoder = "CLIP", # "VQGAN"
    image_encoder_config = None,
    fuse_way = "concat",
    load_text_encoder = False,
    text_encoder_config = None,
    freeze_image_encoder = True,
    trans_emb = False,
    trans_emb_config = None,
    # use_fp16 = False,
    ):
        super().__init__()
        if image_encoder_config is not None:
            image_encoder_config.params.freeze = freeze_image_encoder
            self.image_encoder = instantiate_from_config(image_encoder_config)
        else:
            if image_encoder == "CLIP":
                self.image_encoder =  OpenCLIPImageEmbedder(freeze=freeze_image_encoder)
            elif image_encoder == "VQGAN":
                print("VQGAN glyph image encoder is missing config")
                raise ValueError
            else:
                print("Other types of glyph image encoder are not supported")
                raise ValueError

        if freeze_image_encoder:
            self.freeze_imenc()
        self.freeze_image_encoder = freeze_image_encoder
        self.image_encoder_type = image_encoder


        if load_text_encoder:
            if text_encoder_config is None:
                self.text_encoder = FrozenOpenCLIPEmbedder()
            else:
                self.text_encoder = instantiate_from_config(text_encoder_config)
        self.fuse_way = fuse_way
        # self.dtype = torch.float16 if use_fp16 else torch.float32
        if trans_emb:
            if trans_emb_config is not None:
                self.trans_glyph_emb_model = instantiate_from_config(trans_emb_config)
            else:
                self.trans_glyph_emb_model = trans_glyph_emb()
        else:
            self.trans_glyph_emb_model = None
        
    def freeze_imenc(self):
        self.image_encoder = self.image_encoder.eval()
        self.image_encoder.train = disabled_train
        for param in self.image_encoder.parameters():
            param.requires_grad = False

    def forward(self, glyph_image, text = None, text_embed = None):
        clgim_num_list = [img.shape[0] for img in glyph_image]
        # image_embeds = self.image_encoder(torch.concat(glyph_image, dim=0))
        gim_concat = torch.concat(glyph_image, dim=0)
        image_embeds = self.image_encoder(gim_concat)
        if self.trans_glyph_emb_model is not None:
            image_embeds = self.trans_glyph_emb_model(image_embeds)
        image_embeds = torch.split(image_embeds, clgim_num_list)
        max_image_tokens = max(clgim_num_list)
        pad_image_embeds = []
        for image_embed in image_embeds:
            if image_embed.shape[0] < max_image_tokens:
                image_embed = torch.concat([
                    image_embed,
                    torch.zeros(
                    (max_image_tokens - image_embed.shape[0], *image_embed.shape[1:]), device=image_embed.device, dtype=image_embed.dtype, # add dtype
                    )], dim=0
                )
            pad_image_embeds.append(image_embed)
        pad_image_embeds = torch.stack(pad_image_embeds, dim = 0)
        if text_embed is None:
            assert self.text_encoder, text is not None
            text_embed = self.text_encoder(text)
        if self.fuse_way == "concat":
            assert pad_image_embeds.shape[-1] == text_embed.shape[-1]
            if len(pad_image_embeds.shape) == 4:
                b, _, _ , embdim = pad_image_embeds.shape 
                pad_image_embeds = pad_image_embeds.view(b, -1, embdim)
            out_embed = torch.concat([text_embed, pad_image_embeds], dim= 1)
            print("concat glyph_embed with text_embed:", out_embed.shape)
            return out_embed
        else:
            raise ValueError("Not support other fuse ways for now!")