GlyphControl / ldm /data /laion_aesthetic.py
yyk19's picture
first trial
0902a5f
raw
history blame
17 kB
import os
from glob import glob
import cv2
import albumentations
import numpy as np
from PIL import Image
import pandas as pd
from torchvision import transforms
# from skimage import io
from tqdm import tqdm
import base64
from io import BytesIO
# from ldm.data.base import Txt2ImgIterableBaseDataset
from torch.utils.data.dataloader import _get_distributed_settings
# from abc import abstractmethod
# from torch.utils.data import IterableDataset
import clip
import subprocess
from ldm.data.base import Txt2ImgIterableBaseDataset
import tempfile
class LAIONIterableBaseDataset(Txt2ImgIterableBaseDataset):
'''
Load laion dataset into the IterableDatasets class
'''
def __init__(self, img_folder, caption_folder=None, img_txt_same_file = False,
blob_folder=None, sas_token =None,
max_num_records = 128, max_num_tsv_per_record = 182, tsv_patch_size = 10, start_tsv_idx=None,
do_azcopy=False,
remove_data_from_cluster=False,
size=256,
first_stage_key = "jpg", cond_stage_key = "txt",
clip_model = None, preprocess = None,
do_flip = False, min_crop_f=0.5, max_crop_f=1., flip_p=0.5, random_crop=True):
assert size
super().__init__(size=size)
self.img_folder = img_folder
self.caption_folder = caption_folder
self.img_txt_same_file = img_txt_same_file
if not self.img_txt_same_file:
# blob info
self.blob_folder = blob_folder
self.sas_token = sas_token
self.image_blob_name = os.path.basename(img_folder)
self.caption_blob_name = os.path.basename(caption_folder)
self.remove_data_from_cluster = remove_data_from_cluster if do_azcopy else False
self.do_azcopy = do_azcopy
self.max_num_tsv_per_record = max_num_tsv_per_record
self.tsv_patch_size = tsv_patch_size
self.start_tsv_idx = int(self.tsv_patch_size / 2) if start_tsv_idx is None else start_tsv_idx
if self.start_tsv_idx >= self.tsv_patch_size:# or self.start_tsv_idx < 1:
print("wrongly set the data download time")
raise ValueError
if self.caption_folder:
# try:
if self.do_azcopy:
# except:
self.valid_ids = [
os.path.join(img_folder, "output_part-" + "{:0>5d}".format(i)) for i in range(max_num_records)
]
# self.valid_ids = [
# os.path.join(img_folder, "output_part-" + "{:0>5d}".format(i)) for i in [4,5] #[4,5]
# ]
else:
self.valid_ids = [folder.rstrip("/") for folder in glob(img_folder + "/*/")]
self.num_records = len(self.valid_ids)
if not self.num_records:
print("zero data records, please check the data path")
raise ValueError
self.sample_ids = self.valid_ids
self.max_num = self.num_records * 100000 * self.max_num_tsv_per_record
else:
print("should provide caption folder")
raise ValueError
else:
parquet_paths = []
for root, _, files in os.walk(os.path.abspath(img_folder)):
for file in files:
if file.endswith(".parquet"):
parquet_paths.append(os.path.join(root, file))
# parquet_paths = parquet_paths[:32]
# self.origin_parquet_paths = parquet_paths
# self.parquet_paths = self.origin_parquet_paths
# self.num_records = len(parquet_paths)
self.valid_ids = parquet_paths
self.sample_ids = self.valid_ids
self.num_records = len(self.valid_ids)
self.max_num = self.num_records * 1000
self.first_stage_key = first_stage_key
self.cond_stage_key = cond_stage_key
self.preprocess = None
if preprocess is not None:
self.preprocess = preprocess
else:
if clip_model is not None: # "ViT-L/14"
_, self.preprocess = clip.load(clip_model) #, device=self.device) # RN50x64
self.do_flip = do_flip
if self.do_flip:
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
self.min_crop_f = min_crop_f
self.max_crop_f = max_crop_f
assert(max_crop_f <= 1.)
self.center_crop = not random_crop
self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
# def __len__(self):
# # return self.num_records
# return self.max_num
def __iter__(self):
# if self.caption_folder:
if self.img_txt_same_file:
return self.parquet_iter()
else:
return self.parquet_tsv_iter()
# else:
# return self.parquet_iter()
def parquet_iter(self):
print("this shard on GPU {}: {}".format(_get_distributed_settings()[1], len(self.sample_ids)))
idx = 0
while idx >= 0:
for parqut_path in self.sample_ids: #parquet_paths:
df = pd.read_parquet(parqut_path)
for file_idx in range(len(df)):
img_code = df.jpg.iloc[file_idx]
if img_code:
try:
image = self.generate_img(img_code)
except:
# print("can' t open")
continue
if image is None:
continue
# except:
# continue
try:
text = df.caption.iloc[file_idx]
except:
try:
text = df.TEXT.iloc[file_idx]
except:
continue
if text is None:
continue
example = {}
example[self.first_stage_key] = image
example[self.cond_stage_key] = text
yield example
del df
print("has gone over the whole dataset, need to start next round")
idx += 1
def parquet_tsv_iter(self):
print("this shard on GPU {}: {}".format(_get_distributed_settings()[1], len(self.sample_ids)))
idx = 0
# first_part = True
while idx >= 0:
for subfolder in self.sample_ids: #folders:
parquet_name = os.path.basename(subfolder).split("output_")[1]
caption_path = os.path.join(
self.caption_folder,
parquet_name + ".parquet"
)
if self.do_azcopy:
tsv_paths = [
os.path.join(subfolder, "{:0>6d}.tsv".format(i)) for i in range(self.max_num_tsv_per_record)
]
# tsv_paths = self.check_and_download(caption_path, tsv_paths, subfolder, parquet_name, first_part = first_part)
self.download_data(caption_path, tsv_paths[:self.tsv_patch_size], subfolder, parquet_name, first_part=True)
download_time = 1
else:
tsv_paths = glob(subfolder + "/*.tsv")
par_data = pd.read_parquet(caption_path) # faster
# for image_path in self.tsv_paths[subfolder]:
for rank, image_path in enumerate(tsv_paths):
print("start opening {}".format(image_path))
with open(image_path, "r") as f:
# for line_ in tqdm(f.readlines()):
lines = f.readlines()
print("successfully open and read {}".format(image_path))
if self.remove_data_from_cluster:
self.remove_data(image_path)
if self.do_azcopy and rank == self.start_tsv_idx + (download_time-1) * self.tsv_patch_size:
self.download_data(
caption_path,
tsv_paths[self.tsv_patch_size * download_time: self.tsv_patch_size * (download_time + 1)],
subfolder, parquet_name,
first_part=False
)
download_time += 1
print("download time: {}".format(download_time))
# for line_ in f.readlines():
for i, line_ in enumerate(lines):
# print("the {}th line".format(i))
# line_ = f.readline()
idx, img_code = [str_.strip() for str_ in line_.split("\t")]
# if not list_[1].startswith("/"):
# continue
try:
# img_code = base64.b64decode(img_code) #.decode()
# image = self.generate_img(img_code)
image = self.generate_img(base64.b64decode(img_code))
if image is None:
continue
except:
continue
example = dict()
example[self.first_stage_key] = image
# idx = int(idx)
text = par_data.iloc[int(idx)].TEXT
example[self.cond_stage_key] = text
example["data"] = "\t".join([
parquet_name,
idx,
img_code,
text
])
yield example
# if i == 70000:
# break
del par_data
if self.remove_data_from_cluster:
self.remove_data(caption_path)
# if self.remove_data_from_cluster:
# self.remove_data(caption_path)
# self.remove_data(subfolder)
print("has gone over the whole dataset, need to start next round")
idx += 1
def generate_img(self, img_code):
image = Image.open(BytesIO(img_code))
if self.preprocess:
# pil_image = Image.open(img_path)
image = self.preprocess(image)#.unsqueeze(0)#.to(device)
return image
else:
image = image.convert("RGB")
image = np.array(image).astype(np.uint8)
if image.shape[0] < self.size or image.shape[1] < self.size:
return None
# crop
min_side_len = min(image.shape[:2])
crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
crop_side_len = int(crop_side_len)
if self.center_crop:
self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
else:
self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
image = self.cropper(image=image)["image"] # ?
# rescale
image = self.image_rescaler(image=image)["image"]
# flip
if self.do_flip:
image = self.flip(Image.fromarray(image))
image = np.array(image).astype(np.uint8)
return (image/127.5 - 1.0).astype(np.float32)
def check_and_download(self, caption_path, tsv_paths, subfolder, parquet_name):
if not os.path.exists(caption_path):
try:
os.makedirs(self.caption_folder, exist_ok=True)
self.azcopy_from_blob(
self.caption_blob_name,
parquet_name + ".parquet",
self.caption_folder,
)
except:
print("fail to download caption file from blob!")
raise ValueError
if not len(tsv_paths):
try:
os.makedirs(self.img_folder, exist_ok=True)
self.azcopy_from_blob(
self.image_blob_name,
os.path.basename(subfolder),
self.img_folder,
)
return glob(subfolder + "/*.tsv")
except:
print("fail to download image tsv file from blob!")
raise ValueError
return tsv_paths
def download_data(self, caption_path, tsv_paths, subfolder, parquet_name, first_part=True):
if not os.path.exists(caption_path) and first_part:
try:
os.makedirs(self.caption_folder, exist_ok=True)
self.azcopy_from_blob(
self.caption_blob_name,
parquet_name + ".parquet",
self.caption_folder,
first_part=first_part,
)
except:
print("fail to download caption file from blob!")
raise ValueError
os.makedirs(subfolder, exist_ok=True)
for tsv_path in tsv_paths:
if not os.path.exists(tsv_path):
try:
self.azcopy_from_blob(
self.image_blob_name,
os.path.join(os.path.basename(subfolder), os.path.basename(tsv_path)),
subfolder,
first_part=first_part,
)
# return glob(subfolder + "/*.tsv")
except:
print("fail to download image tsv file from blob to {}!".format(tsv_path))
raise ValueError
# return tsv_paths
def azcopy_from_blob(self, subfolder = "laion-5b", name = "output_part-00005", destination = "/scratch", first_part=True):
command = 'sudo azcopy cp '
if self.blob_folder is None:
print("The blob storage for laion data is not provided!")
raise ValueError
if self.sas_token is None:
print("The sas token for laion data is not provided!")
raise ValueError
file = self.blob_folder + "/" + subfolder + "/" + name
# file = "https://itpsea4data.blob.core.windows.net/v-yukangyang/data/data/laion-5b/output_part-00005"
# sas_token = "?sv=2021-08-06&st=2023-01-05T06%3A47%3A56Z&se=2023-01-11T06%3A47%3A00Z&sr=c&sp=racwl&sig=aAHHp4NhaVWuR7lnhT8GJqZicWvbQia%2FflKmoly4x0A%3D"
# sas_token = "?sv=2021-08-06&st=2023-01-05T06%3A17%3A31Z&se=2023-01-06T06%3A17%3A31Z&sr=c&sp=raccl&sig=0gRoqwgEqeDzZHchhduf9N9jVHLzAnX5iPC%2FOb%2F%2Bk9Q%3D"
# destination = "/scratch"
# sas_token = "?sv=2021-08-06&st=2023-01-05T06%3A17%3A31Z&se=2023-01-06T06%3A17%3A31Z&sr=c&sp=raccl&sig=0gRoqwgEqeDzZHchhduf9N9jVHLzAnX5iPC%2FOb%2F%2Bk9Q%3D"
# file_str = '"' + file + self.sas_token + '"'
file_str = file + self.sas_token
command_line = command + file_str + ' ' + destination + ' --recursive'
command_list = command_line.split(" ")
if first_part:
subprocess.call(
command_list
)
print("azcopy {} successfully!".format(file))
else:
# os.popen(command_line)
# out_temp = tempfile.SpooledTemporaryFile(bufsize=10*1000)
# with tempfile.SpooledTemporaryFile() as out_temp:
# fileno = out_temp.fileno()
# p = subprocess.Popen(command_list, stdout=fileno, stderr=fileno, close_fds=True, shell=True)
# p.communicate()
# p = subprocess.Popen(command_list, close_fds=True, shell=True)
# p.communicate()
# p = subprocess.Popen(command_list, close_fds=True)
# p.communicate()
subprocess.Popen(command_list)
# p = subprocess.Popen(command_list, close_fds=True, stdout=subprocess.PIPE)
print("start downloading {}".format(file))
# for line in iter(p.stdout.readline, b''):
# print(line)
# # print to stdout immediately
# p.stdout.close()
def remove_data(self, file = "/scratch/output_part-00005"):
command = "sudo rm -rf "
command_list = (command + file).split(" ")
subprocess.call(
command_list
)
print("remove {} from the cluster successfully!".format(file))