GlyphControl / ldm /data /laion_ocr_control.py
yyk19's picture
first trial
0902a5f
raw
history blame
8.5 kB
from typing import Dict
import numpy as np
from omegaconf import DictConfig, ListConfig
import torch
from torch.utils.data import Dataset
from pathlib import Path
import json
from PIL import Image
from torchvision import transforms
from einops import rearrange
from ldm.util import instantiate_from_config
# from datasets import load_dataset
import os
from collections import defaultdict
import cv2
import albumentations
import random
from ldm.data.util import new_process_im #, imagenet_process_im
from glob import glob
class LaionOCRCLDataset(Dataset):
def __init__(self,
img_folder,
no_hint = False,
no_caption = False,
first_stage_key = "jpg",
cond_stage_key = "txt",
control_key = "hint",
default_caption="",
ext = "jpg",
img_folder_sym = "real-images",
hint_folder_sym = "rendered-images",
cap_ocr_folder_sym = "info",
postprocess=None,
return_paths=False,
new_proc_config = None,
random_drop_caption = False,
drop_caption_p = 0.5,
ocr_threshold = 0.5,
filter_ocr_data = False,
filter_way = 1,
ocr_area_ths = 0.1,
fixed_ocr_data = True,
sep_cap_for_2b = False,
) -> None:
"""Create a dataset from a folder of images.
If you pass in a root directory it will be searched for images
ending in ext (ext can be a list)
"""
# self.root_dir = Path(img_folder)
img_files = glob(img_folder + "/*.{}".format(ext))
if len(img_files) == 0:
for subfolder in os.listdir(img_folder):
subpath = os.path.join(img_folder, subfolder)
if img_folder_sym in subfolder and os.path.isdir(subpath):
img_files.extend(
glob(subpath + "/*.{}".format(ext))
)
self.img_files = img_files
self.first_stage_key = first_stage_key
self.cond_stage_key = cond_stage_key
# postprocess
if isinstance(postprocess, DictConfig):
postprocess = instantiate_from_config(postprocess)
self.postprocess = postprocess
# image transform
if new_proc_config is not None:
self.new_proc_func = instantiate_from_config(new_proc_config)
else:
self.new_proc_func = new_process_im()
# caption
self.default_caption = default_caption
self.return_paths = return_paths
self.no_hint = no_hint
self.no_caption = no_caption
self.control_key = control_key
self.random_drop_caption = random_drop_caption
self.drop_caption_p = drop_caption_p
self.ext = ext
self.img_folder_sym = img_folder_sym
self.hint_folder_sym = hint_folder_sym
self.cap_ocr_folder_sym = cap_ocr_folder_sym
self.ocr_threshold = ocr_threshold
self.filter_ocr_data = filter_ocr_data
self.ocr_area_ths =ocr_area_ths
self.fixed_ocr_data = fixed_ocr_data
self.sep_cap_for_2b = sep_cap_for_2b
self.filter_way = filter_way
self.filtered_data_list = []
def __len__(self):
return len(self.img_files)
def __getitem__(self, index):
data = {}
filename = self.img_files[index]
if filename in self.filtered_data_list:
return self.__getitem__(np.random.choice(self.__len__()))
dirname, basename = os.path.split(filename)
# if basename == '00842_parquet_00842707.jpg':
# aa = 1
root, img_folder = os.path.split(dirname)
assert basename.endswith(self.ext) and self.img_folder_sym in img_folder
# caption and ocr info
names = os.path.splitext(basename)[0].split("_")
cap_ocr_file = "_".join(names[:-1]) + ".json"
cap_ocr_folder = img_folder.replace(self.img_folder_sym, self.cap_ocr_folder_sym)
cap_ocr_path = os.path.join(root, cap_ocr_folder, cap_ocr_file)
assert os.path.isfile(cap_ocr_path)
with open(cap_ocr_path, "r") as f:
cap_ocr_infos = json.load(f)["ocr_data"]
for item in cap_ocr_infos:
if item["image_name"] == basename:
cap_ocr_info = item
break
if self.no_caption:
caption = self.default_caption
else:
try:
caption = cap_ocr_info["caption"]
except:
caption = self.default_caption
ocr_info = cap_ocr_info["ocr_info"]
pos_info_list = []
ocr_area = 0
if len(ocr_info) == 0:
print("the ocr info of the {} is missing".format(os.path.join(img_folder, basename)))
return self.__getitem__(np.random.choice(self.__len__()))
for info in ocr_info:
if info[-1] > self.ocr_threshold:
xy_info = np.array(info[0])
min_x, min_y = np.min(xy_info, axis = 0).astype(int)
max_x, max_y = np.max(xy_info, axis = 0).astype(int)
pos_info_list.append(
[min_x, min_y, max_x, max_y]
)
# ocr_txt = info[1]
if self.filter_ocr_data and self.filter_way == 1:
ocr_area += np.abs(
np.linalg.det(
[xy_info[1] - xy_info[0], xy_info[3] - xy_info[0]]
)
)
if self.filter_ocr_data and self.filter_way == 1:
with Image.open(filename) as pic:
img_size = pic.size
if ocr_area < self.ocr_area_ths * (img_size[0] * img_size[1]):
# print("the total ocr area is {}, smaller than {} of the original image size {}".format(
# ocr_area, self.ocr_area_ths, str(img_size)
# ))
if filename not in self.filtered_data_list:
self.filtered_data_list.append(filename)
return self.__getitem__(np.random.choice(self.__len__()))
pos_info_list = np.array(pos_info_list)
all_lf, all_up = np.min(pos_info_list[:, :2], axis = 0)
all_rg, all_dn = np.max(pos_info_list[:, 2:], axis = 0)
all_pos_info = [all_lf, all_up, all_rg, all_dn]
# another way to filter ocr data
if self.filter_ocr_data and self.filter_way == 2:
with Image.open(filename) as pic:
img_size = pic.size
if (all_rg - all_lf) * (all_dn - all_up) < self.ocr_area_ths * (img_size[0] * img_size[1]):
# print("the total ocr area is {}, smaller than {} of the original image size {}".format(
# (all_rg - all_lf) * (all_dn - all_up), self.ocr_area_ths, str(img_size)
# ))
if filename not in self.filtered_data_list:
self.filtered_data_list.append(filename)
return self.__getitem__(np.random.choice(self.__len__()))
# hint
hint_folder = img_folder.replace(self.img_folder_sym, self.hint_folder_sym) + "-fixed" if self.fixed_ocr_data else ""
if not self.no_hint:
hint_filename = os.path.join(root, hint_folder, basename)
if not os.path.isfile(hint_filename):
print("Hint file {} does not exist".format(hint_filename))
return self.__getitem__(np.random.choice(self.__len__()))
else:
hint_filename = None
assert all_pos_info
im, im_hint = self.new_proc_func(filename, all_pos_info, hint_filename)
if not self.no_hint:
assert im_hint is not None
data[self.control_key] = im_hint
data[self.first_stage_key] = im
if self.return_paths:
data["path"] = str(filename)
out_caption = caption
if self.random_drop_caption:
if torch.rand(1) < self.drop_caption_p:
out_caption = ""
if not self.sep_cap_for_2b:
data[self.cond_stage_key] = out_caption
else:
data[self.cond_stage_key] = [caption, out_caption]
# if self.random_drop_caption:
# if torch.rand(1) < self.drop_caption_p:
# caption = ""
# data[self.cond_stage_key] = caption
if self.postprocess is not None:
data = self.postprocess(data)
return data