Spaces:
Runtime error
Runtime error
from typing import Dict | |
import numpy as np | |
from omegaconf import DictConfig, ListConfig | |
import torch | |
from torch.utils.data import Dataset | |
from pathlib import Path | |
import json | |
from PIL import Image | |
from torchvision import transforms | |
from einops import rearrange | |
from ldm.util import instantiate_from_config | |
# from datasets import load_dataset | |
import os | |
from collections import defaultdict | |
import cv2 | |
import albumentations | |
import random | |
from ldm.data.util import new_process_im_base, process_wb_im, vqgan_process_im #, imagenet_process_im | |
from glob import glob | |
import random | |
import base64 | |
from io import BytesIO | |
from annotator.render_images import render_glyph_image | |
class LaionOCRCLDataset(Dataset): | |
def __init__(self, | |
img_folder, | |
ocr_folder, | |
data_info_file, | |
max_num_samples = -1, | |
no_hint = False, | |
first_stage_key = "jpg", | |
cond_stage_key = "txt", | |
control_key = "hint", | |
BLIP_caption = False, #True, | |
filter_ocr_data = False, | |
filter_way = 0, #0, 1, 2 | |
ocr_threshold = 0.5, | |
ocr_area_ths = 0.1, | |
max_token_num = 3, | |
rendered_txt_in_caption = False, | |
caption_choices = ["original", "w_rend_text", "wo_rend_text"], | |
caption_drop_rates = [0.1, 0.5, 0.1], | |
postprocess=None, | |
new_proc_config = None, | |
add_glyph_control = False, | |
glyph_control_key = "centered_hint", # "arranged_hint" | |
glyph_control_proc_config = None, | |
# centered_glyph_folder = None, | |
max_glyph_imgs_num = 0, #5, | |
glyph_image_encoder_type = "CLIP", | |
rm_text_from_cp = False, | |
replace_token = "", | |
glyph_image_drop_rate = 0, | |
uncond_glyph_image_type = "white", #"whiteboard", | |
) -> None: | |
"""Create a dataset from a folder of images. | |
If you pass in a root directory it will be searched for images | |
ending in ext (ext can be a list) | |
""" | |
with open(data_info_file, "r") as f: | |
data_infos = f.readlines() | |
if max_num_samples > 0: | |
data_infos = random.sample(data_infos, max_num_samples) | |
self.data_infos = data_infos | |
self.img_folder = img_folder | |
self.ocr_folder = ocr_folder | |
self.ocr_threshold = ocr_threshold | |
self.no_hint = no_hint | |
self.filter_ocr_data = filter_ocr_data | |
self.filter_way = filter_way | |
self.max_token_num = max_token_num | |
self.ocr_area_ths =ocr_area_ths | |
self.caption_choices = caption_choices | |
self.caption_drop_rates = caption_drop_rates | |
self.rendered_txt_in_caption = rendered_txt_in_caption | |
self.BLIP_caption = BLIP_caption | |
self.first_stage_key = first_stage_key | |
self.cond_stage_key = cond_stage_key | |
self.control_key = control_key | |
# centered_hint | |
self.add_glyph_control = add_glyph_control #False | |
self.glyph_control_key = glyph_control_key | |
if self.add_glyph_control: | |
if glyph_image_encoder_type not in ["CLIP", "VQGAN"]: | |
print("currently not support other types of glyph image encoders") | |
raise ValueError | |
if glyph_control_proc_config is not None: | |
self.glyph_control_proc = instantiate_from_config(glyph_control_proc_config) | |
else: | |
if glyph_image_encoder_type == "CLIP": | |
self.glyph_control_proc = process_wb_im(exchange_channel= True, image_transforms=[]) | |
elif glyph_image_encoder_type == "VQGAN": | |
self.glyph_control_proc = vqgan_process_im(augment=False, ori_preprocessor = False) | |
self.glyph_image_encoder_type = glyph_image_encoder_type | |
self.max_glyph_imgs_num = max_glyph_imgs_num | |
# postprocess | |
if isinstance(postprocess, DictConfig): | |
postprocess = instantiate_from_config(postprocess) | |
self.postprocess = postprocess | |
# image transform | |
if new_proc_config is not None: | |
self.new_proc_func = instantiate_from_config(new_proc_config) | |
else: | |
self.new_proc_func = new_process_im_base() | |
self.filtered_data_list = [] | |
self.rm_text_from_cp = rm_text_from_cp | |
self.replace_token = replace_token | |
self.glyph_image_drop_rate = glyph_image_drop_rate | |
self.uncond_glyph_image_type = uncond_glyph_image_type | |
def __len__(self): | |
return len(self.data_infos) | |
def __getitem__(self, index): | |
data = {} | |
# data info | |
data_info = self.data_infos[index] | |
info_split = [di.strip() for di in data_info.split("\t")] | |
try: | |
assert len(info_split) == 5 | |
except: | |
print("data_info_error", len(info_split)) | |
return self.__getitem__(np.random.choice(self.__len__())) | |
tsv_name = info_split[2] | |
path_split = tsv_name.split("/") | |
try: | |
assert len(path_split) <= 2 | |
except: | |
print("wrong tsv path", tsv_name) | |
return self.__getitem__(np.random.choice(self.__len__())) | |
tsv_name = path_split[-1] | |
if len(path_split) == 2: | |
img_folder = os.path.join(self.img_folder, path_split[0]) | |
ocr_folder = os.path.join( | |
self.ocr_folder, | |
path_split[0].rstrip("_with_new_caption").replace("ori", "ocr") | |
) | |
else: | |
img_folder = self.img_folder | |
ocr_folder = self.ocr_folder | |
file_pos = eval(info_split[3]) | |
idx_in_tsv = eval(info_split[4]) | |
img_id = "\t".join(info_split[:2]) | |
if self.filter_ocr_data and img_id in self.filtered_data_list: | |
return self.__getitem__(np.random.choice(self.__len__())) | |
# original image | |
ori_tsv_file = os.path.join(img_folder, tsv_name) | |
with open(ori_tsv_file, "r") as f: | |
f.seek(file_pos) | |
img_info = f.readline() | |
img_info_split = [di.strip() for di in img_info.split("\t")] | |
try: | |
assert len(img_info_split) >= 4 #=4 | |
assert img_id == "\t".join(img_info_split[:2]) | |
except: | |
print("image_info_error", len(img_info_split), img_id, "\t".join(img_info_split[:2])) | |
return self.__getitem__(np.random.choice(self.__len__())) | |
img_code = img_info_split[2] #[-2] | |
try: | |
ori_img = Image.open(BytesIO(base64.b64decode(img_code))) | |
except: | |
print("can't open original image: {}".format(img_id)) | |
return self.__getitem__(np.random.choice(self.__len__())) | |
if self.BLIP_caption: | |
try: | |
assert len(img_info_split) == 5 | |
except: | |
print("caption_error", len(img_info_split), img_id, "\t".join(img_info_split[:2]), img_info_split[-1]) | |
return self.__getitem__(np.random.choice(self.__len__())) | |
caption_ori = img_info_split[-1] | |
else: | |
caption_ori = img_info_split[3] | |
img_size = ori_img.size | |
# ocr info | |
name_split = os.path.splitext(tsv_name)[0].split("_") | |
ocr_infos_file = os.path.join( | |
ocr_folder, | |
"_".join(name_split[:-1] + ["ocr_info"] + [name_split[-1]]) + ".json" | |
) | |
try: | |
with open(ocr_infos_file, "r") as f: | |
ocr_infos = json.load(f) | |
except: | |
print("can't open ocr info file {}".format(ocr_infos_file)) | |
return self.__getitem__(np.random.choice(self.__len__())) | |
try: | |
ocr_info = ocr_infos[img_id] | |
assert len(ocr_info) > 0 | |
except: | |
print("the ocr info of the {} is missing in {}".format(img_id, ocr_infos_file)) | |
return self.__getitem__(np.random.choice(self.__len__())) | |
if self.filter_ocr_data and self.filter_way == 0 and len(ocr_info) > self.max_token_num: | |
if img_id not in self.filtered_data_list: | |
self.filtered_data_list.append(img_id) | |
return self.__getitem__(np.random.choice(self.__len__())) | |
ocr_area = 0 | |
pos_info_list = [] | |
pos_info_tuples = [] | |
for info in ocr_info: | |
bbox, (text, confidence) = info | |
if confidence > self.ocr_threshold: | |
xy_info = np.array(bbox) | |
min_x, min_y = np.min(xy_info, axis = 0).astype(int) | |
max_x, max_y = np.max(xy_info, axis = 0).astype(int) | |
pos_info_list.append( | |
[min_x, min_y, max_x, max_y] | |
) | |
mean_xy = (xy_info[0] + xy_info[2]) / 2 | |
lf = xy_info[0, 0] # min_x | |
pos_info_tuples.append((text, 0.2 * lf + mean_xy[1])) #0.15 | |
# ocr_txt = info[1] | |
if self.filter_ocr_data and self.filter_way == 1: | |
ocr_area += np.abs( | |
np.linalg.det( | |
[xy_info[1] - xy_info[0], xy_info[3] - xy_info[0]] | |
) | |
) | |
if self.filter_ocr_data and self.filter_way == 1: | |
if ocr_area < self.ocr_area_ths * (img_size[0] * img_size[1]): | |
if img_id not in self.filtered_data_list: | |
self.filtered_data_list.append(img_id) | |
return self.__getitem__(np.random.choice(self.__len__())) | |
pos_info_list = np.array(pos_info_list) | |
all_lf, all_up = np.min(pos_info_list[:, :2], axis = 0) | |
all_rg, all_dn = np.max(pos_info_list[:, 2:], axis = 0) | |
all_pos_info = [all_lf, all_up, all_rg, all_dn] | |
# the third way to filter ocr data | |
if self.filter_ocr_data and self.filter_way == 2: | |
if (all_rg - all_lf) * (all_dn - all_up) < self.ocr_area_ths * (img_size[0] * img_size[1]): | |
if img_id not in self.filtered_data_list: | |
self.filtered_data_list.append(img_id) | |
return self.__getitem__(np.random.choice(self.__len__())) | |
# hint image | |
if not self.no_hint: | |
hint_tsv_file = os.path.join( | |
ocr_folder, | |
"_".join(name_split[:-1] + ["rendered"] + [name_split[-1]]) + ".tsv" | |
) | |
with open(hint_tsv_file, "r") as f: | |
hint_img_infos = f.readlines() | |
hint_img_info = hint_img_infos[idx_in_tsv] | |
hint_img_info_split = [di.strip() for di in hint_img_info.split("\t")] | |
try: | |
assert len(hint_img_info_split) == 3 | |
assert img_id == "\t".join(hint_img_info_split[:2]) | |
except: | |
print("hint_image_info_error", len(hint_img_info_split), img_id, "\t".join(hint_img_info_split[:2])) | |
return self.__getitem__(np.random.choice(self.__len__())) | |
hint_img_code = hint_img_info_split[-1] | |
try: | |
hint_img = Image.open(BytesIO(base64.b64decode(hint_img_code))) | |
except: | |
print("can't open hint image: {}".format(img_id)) | |
return self.__getitem__(np.random.choice(self.__len__())) | |
else: | |
hint_img = None | |
# return self.__getitem__(np.random.choice(self.__len__())) | |
assert all_pos_info | |
im, im_hint = self.new_proc_func(ori_img, all_pos_info, hint_img) | |
if not self.no_hint: | |
assert im_hint is not None | |
data[self.control_key] = im_hint | |
data[self.first_stage_key] = im | |
caption_wr_text = None | |
arrange_tokens = [item[0] for item in (sorted(pos_info_tuples, key=lambda x: x[1]))] | |
if self.rendered_txt_in_caption: | |
valid_words = " ".join(arrange_tokens) | |
caption_wr_text = caption_ori + '. Words in the image: "{}"'.format(valid_words) | |
# class_name = "" | |
# if class_name == "": | |
# return self.__getitem__(np.random.choice(self.__len__())) | |
# else: | |
# caption_wr_text = 'A {} that says "{}".'.format( | |
# class_name, valid_words | |
# ) | |
if self.add_glyph_control: | |
drop_glyph_image = torch.rand(1) < self.glyph_image_drop_rate | |
# if drop_glyph_image: | |
# aa = 1 | |
# assert self.uncond_glyph_image_type == "whiteboard" | |
# Currently only support whiteboard images as unconditional condition of glyph image embeddings | |
if self.glyph_control_key == "centered_hint": | |
glyphs = [rg.strip() for rg in arrange_tokens] | |
if len(glyphs) == 0: | |
print("error: glyphs - None") | |
return self.__getitem__(np.random.choice(self.__len__())) | |
if self.max_glyph_imgs_num > 0: | |
glyphs = glyphs[:self.max_glyph_imgs_num] | |
if not drop_glyph_image: | |
glyph_images = render_glyph_image(glyphs, fill_way="tight") #"both_padding" | |
cglyph_images_procd = [] | |
for cgim in glyph_images: | |
if 0 in cgim.size: | |
print("error: glyph image has ", cgim.size, arrange_tokens) | |
return self.__getitem__(np.random.choice(self.__len__())) | |
try: | |
cgim_processed = self.glyph_control_proc(cgim) | |
cglyph_images_procd.append(cgim_processed) | |
except Exception as e: | |
print(e) | |
print("invalid glyph image", cgim.size) | |
return self.__getitem__(np.random.choice(self.__len__())) | |
else: | |
cglyph_images_procd = [ | |
self.glyph_control_proc(Image.new("RGB", (224, 224), self.uncond_glyph_image_type)) | |
] * len(glyphs) | |
# cglyph_images_procd = [self.glyph_control_proc(cgim) for cgim in glyph_images] | |
elif self.glyph_control_key == "arranged_hint": | |
assert hint_img is not None | |
cglyph_images_procd = [ | |
self.glyph_control_proc( | |
hint_img if not drop_glyph_image else | |
Image.new("RGB", (224, 224), self.uncond_glyph_image_type) | |
) | |
] | |
else: | |
print("not support glyph control keys beyond 'centered_hint' and 'arranage_hint'") | |
raise ValueError | |
if isinstance(cglyph_images_procd[0], torch.Tensor): | |
data[self.glyph_control_key] = torch.stack(cglyph_images_procd, dim = 0) | |
elif isinstance(cglyph_images_procd[0], np.ndarray): | |
data[self.glyph_control_key] = np.stack(cglyph_images_procd, axis = 0) | |
caption_wo_text = None | |
if self.rm_text_from_cp and self.BLIP_caption: # only generate the caption without the rendered words in it while using BLIP captions | |
# caption_wo_text = caption_ori | |
# for token in arrange_tokens: | |
# caption_wo_text = caption_wo_text.replace(token, self.replace_token) | |
caption_items = caption_ori.split(" ") | |
lower_arrange_tokens = [tk.lower() for tk in arrange_tokens] | |
caption_wo_text = [] | |
for cp_item in caption_items: | |
if cp_item.lower() in lower_arrange_tokens: | |
if self.replace_token != "": | |
caption_wo_text.append(self.replace_token) | |
else: | |
caption_wo_text.append(cp_item) | |
caption_wo_text = " ".join(caption_wo_text) | |
prompt_list = [] | |
for i in range(len(self.caption_choices)): | |
cc = self.caption_choices[i] | |
if cc == "original": | |
caption = caption_ori | |
elif cc == "w_rend_text": | |
caption = caption_wr_text if caption_wr_text is not None else caption_ori | |
elif cc == "wo_rend_text": | |
caption = caption_wo_text if caption_wo_text is not None else caption_ori | |
if torch.rand(1) < self.caption_drop_rates[i]: | |
caption = "" | |
prompt_list.append(caption) | |
data[self.cond_stage_key] = prompt_list if len(prompt_list) > 1 else prompt_list[0] | |
if self.postprocess is not None: | |
data = self.postprocess(data) | |
return data | |