Spaces:
Runtime error
Runtime error
from typing import Dict | |
import numpy as np | |
from omegaconf import DictConfig, ListConfig | |
import torch | |
from torch.utils.data import Dataset | |
from pathlib import Path | |
import json | |
from PIL import Image | |
from torchvision import transforms | |
from einops import rearrange | |
from ldm.util import instantiate_from_config | |
# from datasets import load_dataset | |
import os | |
from collections import defaultdict | |
def make_multi_folder_data(paths, caption_files=None, **kwargs): | |
"""Make a concat dataset from multiple folders | |
Don't support captions yet | |
If paths is a list, that's ok, if it's a Dict interpret it as: | |
k=folder v=n_times to repeat that | |
""" | |
list_of_paths = [] | |
if isinstance(paths, (Dict, DictConfig)): | |
assert caption_files is None, \ | |
"Caption files not yet supported for repeats" | |
for folder_path, repeats in paths.items(): | |
list_of_paths.extend([folder_path]*repeats) | |
paths = list_of_paths | |
if caption_files is not None: | |
datasets = [TextCapsDataset(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)] | |
else: | |
datasets = [TextCapsDataset(p, **kwargs) for p in paths] | |
return torch.utils.data.ConcatDataset(datasets) | |
class TextCapsDataset(Dataset): | |
def __init__(self, | |
img_folder, | |
caption_file=None, | |
image_transforms=[], | |
first_stage_key = "jpg", cond_stage_key = "txt", | |
OneCapPerImage = False, | |
default_caption="", | |
ext="jpg", | |
postprocess=None, | |
return_paths=False, | |
filter_data=False, | |
filter_words=["sign", "poster"], | |
ocr_file=None, | |
) -> None: | |
"""Create a dataset from a folder of images. | |
If you pass in a root directory it will be searched for images | |
ending in ext (ext can be a list) | |
""" | |
self.root_dir = Path(img_folder) | |
self.first_stage_key = first_stage_key | |
self.cond_stage_key = cond_stage_key | |
# postprocess | |
if isinstance(postprocess, DictConfig): | |
postprocess = instantiate_from_config(postprocess) | |
self.postprocess = postprocess | |
# image transform | |
if isinstance(image_transforms, ListConfig): | |
image_transforms = [instantiate_from_config(tt) for tt in image_transforms] | |
image_transforms.extend([transforms.ToTensor(), # to be checked | |
transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]) | |
image_transforms = transforms.Compose(image_transforms) | |
self.tform = image_transforms | |
# caption | |
if caption_file is not None: | |
with open(caption_file, "rt") as f: | |
ext = Path(caption_file).suffix.lower() | |
if ext == ".json": | |
captions = json.load(f) | |
# elif ext == ".jsonl": | |
# lines = f.readlines() | |
# lines = [json.loads(x) for x in lines] | |
# captions = {x["file_name"]: x["text"].strip("\n") for x in lines} | |
else: | |
raise ValueError(f"Unrecognised format: {ext}") | |
self.captions = captions["data"] | |
if OneCapPerImage and ocr_file is None: | |
new_captions = [] | |
taken_images = [] | |
for caption_data in self.captions: | |
if caption_data["image_id"] in taken_images: | |
continue | |
else: | |
new_captions.append(caption_data) | |
taken_images.append(caption_data["image_id"]) | |
self.captions = new_captions | |
else: | |
self.captions = None | |
if not isinstance(ext, (tuple, list, ListConfig)): | |
ext = [ext] | |
# Only used if there is no caption file | |
self.paths = [] | |
for e in ext: | |
self.paths.extend(list(self.root_dir.rglob(f"*.{e}"))) | |
self.default_caption = default_caption | |
self.return_paths = return_paths | |
self.filter_data = filter_data | |
self.filter_words = filter_words | |
self.ocr_file = ocr_file | |
self.ocr_data = [] | |
if ocr_file is not None: | |
assert self.captions is not None | |
with open(ocr_file, "r") as f: | |
ocrs = json.loads(f.read()) | |
ocr_data = ocrs['data'] | |
self.ocr_data = ocr_data | |
def __len__(self): | |
if self.ocr_file is not None: | |
return len(self.ocr_data) | |
if self.captions is not None: | |
# return len(self.captions.keys()) | |
return len(self.captions) | |
else: | |
return len(self.paths) | |
def __getitem__(self, index): | |
data = {} | |
if self.ocr_file is not None: | |
sample = self.ocr_data[index] | |
image_id = sample["image_id"] | |
ocr_tokens = sample["ocr_tokens"] | |
ocr_info = sample["ocr_info"] | |
chosen = image_id + ".jpg" | |
filename = self.root_dir/chosen | |
for d in self.captions: | |
if d["image_id"] == image_id: | |
image_captions = d["reference_strs"] | |
image_classes = d["image_classes"] | |
break | |
if not len(ocr_tokens) or not len(image_captions) or not len(image_classes): | |
return self.__getitem__(np.random.choice(self.__len__())) | |
tokens_state=defaultdict(list) | |
for token in ocr_tokens: | |
token_info = [ | |
caption for caption in image_captions if (token.lower() in caption.rstrip(".").lower().split(" ")) | |
] | |
tokens_state[len(token_info)].append(token.lower()) | |
max_n = max(tokens_state.keys()) | |
if max_n > 0: | |
valid_tokens = list(set(tokens_state[max_n])) | |
pos_info = dict() | |
for token in valid_tokens: | |
for item in ocr_info: | |
if item['word'].lower() == token: | |
token_box = item['bounding_box'] | |
tx, ty = token_box['top_left_x'], token_box['top_left_y'] | |
pos_info[token] = tx+ty | |
break | |
# arrange_tokens = list(dict(sorted(pos_info.items(), key=lambda x: x[1])).keys()) | |
arrange_tokens = [item[0] for item in (sorted(pos_info.items(), key=lambda x: x[1]))] | |
valid_words = " ".join(arrange_tokens) | |
class_name = "" | |
for word in self.filter_words: | |
if word in " ".join(image_classes).lower(): | |
class_name = word | |
break | |
if class_name == "": | |
return self.__getitem__(np.random.choice(self.__len__())) | |
else: | |
caption = "A {} that says '{}'.".format( | |
class_name, valid_words | |
) | |
else: | |
return self.__getitem__(np.random.choice(self.__len__())) | |
# if self.filter_data: | |
# if not len([word for word in self.filter_words if word in caption.rstrip(".").lower().split(" ")]): | |
# return self.__getitem__(np.random.choice(self.__len__())) | |
else: | |
if self.captions is not None: | |
# chosen = list(self.captions.keys())[index] | |
# caption = self.captions.get(chosen, None) | |
caption_data = self.captions[index] | |
chosen = os.path.basename(caption_data["image_path"]) | |
caption = caption_data["caption_str"] | |
if caption is None: | |
caption = self.default_caption | |
filename = self.root_dir/chosen | |
# data[self.cond_stage_key] = caption | |
else: | |
filename = self.paths[index] | |
caption = self.default_caption | |
# data[self.cond_stage_key] = self.default_caption | |
if self.filter_data: | |
if not len([word for word in self.filter_words if word in caption.rstrip(".").lower().split(" ")]): | |
return self.__getitem__(np.random.choice(self.__len__())) | |
if self.return_paths: | |
data["path"] = str(filename) | |
im = Image.open(filename) | |
im = self.process_im(im) | |
data[self.first_stage_key] = im | |
data[self.cond_stage_key] = caption | |
# if self.captions is not None: | |
# data[self.cond_stage_key] = caption | |
# else: | |
# data[self.cond_stage_key] = self.default_caption | |
if self.postprocess is not None: | |
data = self.postprocess(data) | |
return data | |
def process_im(self, im): | |
im = im.convert("RGB") | |
return self.tform(im) | |