Spaces:
Runtime error
Runtime error
import argparse, os | |
import cv2 | |
import torch | |
import numpy as np | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from tqdm import tqdm, trange | |
from itertools import islice | |
from einops import rearrange | |
from torchvision.utils import make_grid | |
from pytorch_lightning import seed_everything | |
from torch import autocast | |
from contextlib import nullcontext | |
from imwatermark import WatermarkEncoder | |
from ldm.util import instantiate_from_config | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.models.diffusion.plms import PLMSSampler | |
from ldm.models.diffusion.dpm_solver import DPMSolverSampler | |
torch.set_grad_enabled(False) | |
def chunk(it, size): | |
it = iter(it) | |
return iter(lambda: tuple(islice(it, size)), ()) | |
def load_model_from_config(config, ckpt, verbose=False, not_use_ckpt=False): | |
print(f"Loading model from {ckpt}") | |
pl_sd = torch.load(ckpt, map_location="cpu") | |
if "global_step" in pl_sd: | |
print(f"Global Step: {pl_sd['global_step']}") | |
sd = pl_sd["state_dict"] | |
if "model_ema.diffusion_modelinput_blocks00weight" not in sd: | |
config.model.params.use_ema = False | |
model = instantiate_from_config(config.model) | |
if not not_use_ckpt: | |
m, u = model.load_state_dict(sd, strict=False) | |
if len(m) > 0 and verbose: | |
print("missing keys: {}".format(len(m))) | |
print(m) | |
if len(u) > 0 and verbose: | |
print("unexpected keys: {}".format(len(u))) | |
print(u) | |
model.cuda() | |
model.eval() | |
return model | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--prompt", | |
type=str, | |
nargs="?", | |
default="a professional photograph of an astronaut riding a triceratops", | |
help="the prompt to render" | |
) | |
parser.add_argument( | |
"--outdir", | |
type=str, | |
nargs="?", | |
help="dir to write results to", | |
default="outputs/txt2img-samples" | |
) | |
parser.add_argument( | |
"--steps", | |
type=int, | |
default=50, | |
help="number of ddim sampling steps", | |
) | |
parser.add_argument( | |
"--plms", | |
action='store_true', | |
help="use plms sampling", | |
) | |
parser.add_argument( | |
"--dpm", | |
action='store_true', | |
help="use DPM (2) sampler", | |
) | |
parser.add_argument( | |
"--fixed_code", | |
action='store_true', | |
help="if enabled, uses the same starting code across all samples ", | |
) | |
parser.add_argument( | |
"--ddim_eta", | |
type=float, | |
default=0.0, | |
help="ddim eta (eta=0.0 corresponds to deterministic sampling", | |
) | |
parser.add_argument( | |
"--n_iter", | |
type=int, | |
default=3, | |
help="sample this often", | |
) | |
parser.add_argument( | |
"--H", | |
type=int, | |
default=512, | |
help="image height, in pixel space", | |
) | |
parser.add_argument( | |
"--W", | |
type=int, | |
default=512, | |
help="image width, in pixel space", | |
) | |
parser.add_argument( | |
"--C", | |
type=int, | |
default=4, | |
help="latent channels", | |
) | |
parser.add_argument( | |
"--f", | |
type=int, | |
default=8, | |
help="downsampling factor, most often 8 or 16", | |
) | |
parser.add_argument( | |
"--n_samples", | |
type=int, | |
default=3, | |
help="how many samples to produce for each given prompt. A.k.a batch size", | |
) | |
parser.add_argument( | |
"--n_rows", | |
type=int, | |
default=0, | |
help="rows in the grid (default: n_samples)", | |
) | |
parser.add_argument( | |
"--scale", | |
type=float, | |
default=9.0, | |
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", | |
) | |
parser.add_argument( | |
"--from-file", | |
type=str, | |
help="if specified, load prompts from this file, separated by newlines", | |
) | |
parser.add_argument( | |
"--config", | |
type=str, | |
default="configs/stable-diffusion/v2-inference.yaml", | |
help="path to config which constructs model", | |
) | |
parser.add_argument( | |
"--ckpt", | |
type=str, | |
help="path to checkpoint of model", | |
) | |
parser.add_argument( | |
"--seed", | |
type=int, | |
default=42, | |
help="the seed (for reproducible sampling)", | |
) | |
parser.add_argument( | |
"--precision", | |
type=str, | |
help="evaluate at this precision", | |
choices=["full", "autocast"], | |
default="autocast" | |
) | |
parser.add_argument( | |
"--repeat", | |
type=int, | |
default=1, | |
help="repeat each prompt in file this often", | |
) | |
parser.add_argument( | |
"--ckpt_folder", | |
type=str, | |
help="paths to checkpoints of model, if specified, use the checkpoints in the folder", | |
) | |
parser.add_argument( | |
"--max_num_prompts", | |
type=int, | |
default=None, | |
help="max num of the used prompts", | |
) | |
parser.add_argument( | |
"--not_use_ckpt", | |
action='store_true', | |
help="whether to not use the ckpt", | |
) | |
parser.add_argument( | |
"--spell_prompt_type", | |
type=int, | |
default=1, | |
help="1: A sign with the word 'xxx' written on it; 2: A sign that says 'xxx'", | |
) | |
parser.add_argument( | |
"--update", | |
action='store_true', | |
help="whether to update the existing generated images", | |
) | |
parser.add_argument( | |
"--grams", | |
type=int, | |
default=1, | |
help="How many grams (words or symbols) to form the to-be-rendered text (used for DrawSpelling Benchmark)", | |
) | |
parser.add_argument( | |
"--save_form", | |
type=str, | |
help="the form of the saved images, png or pdf", | |
# choices=["full", "autocast"], | |
default="png" | |
) | |
parser.add_argument( | |
"--verbose_all_prompts", | |
action='store_true', | |
help="whether to verbose all the prompts to the log", | |
) | |
return parser | |
# opt = parser.parse_args() | |
# return opt | |
def put_watermark(img, wm_encoder=None): | |
if wm_encoder is not None: | |
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
img = wm_encoder.encode(img, 'dwtDct') | |
img = Image.fromarray(img[:, :, ::-1]) | |
return img | |
def main(opt): | |
seed_everything(opt.seed) | |
# batch_size = opt.n_samples | |
# n_rows = opt.n_rows if opt.n_rows > 0 else batch_size | |
if not opt.from_file: | |
prompt = opt.prompt | |
print("the prompt is {}".format(prompt)) | |
assert prompt is not None | |
batch_size = opt.n_samples if opt.n_samples>0 else 1 | |
data = [batch_size * [prompt]] | |
outpath = os.path.join( | |
opt.outdir, | |
opt.prompt, | |
os.path.splitext(os.path.basename(opt.ckpt))[0] | |
) | |
else: | |
print(f"reading prompts from {opt.from_file}") | |
with open(opt.from_file, "r") as f: | |
data = f.read().splitlines() | |
if "gram" in os.path.basename(opt.from_file): | |
data = [item.split("\t")[0] for item in data] | |
if opt.grams > 1: | |
data = [" ".join(data[i:i + opt.grams]) for i in range(0, len(data), opt.grams)] | |
if "DrawText_Spelling" in os.path.basename(opt.from_file) or "gram" in os.path.basename(opt.from_file): | |
if opt.spell_prompt_type == 1: | |
data = ['A sign with the word "{}" written on it'.format(line.strip()) for line in data] | |
elif opt.spell_prompt_type == 2: | |
data = ["A sign that says '{}'".format(line.strip()) for line in data] | |
elif opt.spell_prompt_type == 20: | |
data = ['A sign that says "{}"'.format(line.strip()) for line in data] | |
elif opt.spell_prompt_type == 3: | |
data = ["A whiteboard that says '{}'".format(line.strip()) for line in data] | |
elif opt.spell_prompt_type == 30: | |
data = ['A whiteboard that says "{}"'.format(line.strip()) for line in data] | |
else: | |
print("Only five types of prompt templates are supported currently") | |
raise ValueError | |
if opt.verbose_all_prompts: | |
show_num = opt.max_num_prompts if (opt.max_num_prompts is not None and opt.max_num_prompts >0) else 10 | |
for i in range(show_num): | |
print("embed the word into the prompt template for {} Benchmark: {}".format( | |
os.path.basename(opt.from_file), data[i]) | |
) | |
else: | |
print("embed the word into the prompt template for {} Benchmark: e.g., {}".format( | |
os.path.basename(opt.from_file), data[0]) | |
) | |
if opt.max_num_prompts is not None and opt.max_num_prompts >0: | |
print("only use {} prompts to test the model".format(opt.max_num_prompts)) | |
data = data[:opt.max_num_prompts] | |
data = [p for p in data for i in range(opt.repeat)] | |
batch_size = opt.n_samples if opt.n_samples>0 else len(data) | |
data = list(chunk(data, batch_size)) | |
outpath = os.path.join( | |
opt.outdir, | |
os.path.splitext(os.path.basename(opt.from_file))[0] | |
+ ("_{}_{}_gram".format(opt.spell_prompt_type, opt.grams) if "DrawText_Spelling" in os.path.basename(opt.from_file) else ""), | |
os.path.splitext(os.path.basename(opt.ckpt))[0] | |
) | |
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size | |
if os.path.exists(outpath): | |
if not opt.update: | |
print("{} already exists and we will not update it".format(outpath)) | |
return | |
else: | |
print("{} already exists but we will update it".format(outpath)) | |
os.makedirs(outpath, exist_ok=True) | |
sample_path = os.path.join(outpath, "samples") | |
os.makedirs(sample_path, exist_ok=True) | |
save_form = opt.save_form | |
sample_count = 0 | |
sample_limit = 15 #20 #10 | |
base_count = len(os.listdir(sample_path)) | |
grid_count = len(os.listdir(outpath)) - 1 | |
config = OmegaConf.load(f"{opt.config}") | |
model = load_model_from_config(config, f"{opt.ckpt}", verbose=True, not_use_ckpt=opt.not_use_ckpt) | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = model.to(device) | |
if opt.plms: | |
sampler = PLMSSampler(model) | |
elif opt.dpm: | |
# DPM-Solver | |
sampler = DPMSolverSampler(model) | |
else: | |
sampler = DDIMSampler(model) | |
# os.makedirs(opt.outdir, exist_ok=True) | |
# outpath = opt.outdir | |
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") | |
wm = "SDV2" | |
wm_encoder = WatermarkEncoder() | |
wm_encoder.set_watermark('bytes', wm.encode('utf-8')) | |
start_code = None | |
if opt.fixed_code: | |
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device) | |
print("precison strategy: {}".format(opt.precision)) | |
precision_scope = autocast if opt.precision == "autocast" else nullcontext | |
with torch.no_grad(), \ | |
precision_scope("cuda"), \ | |
model.ema_scope("Sampling on Benchmark Prompts"): | |
all_samples = list() | |
for n in trange(opt.n_iter, desc="Sampling"): | |
for prompts in tqdm(data, desc="data"): | |
uc = None | |
batch_size_real = len(prompts) | |
if opt.scale != 1.0: # classifier-free guidance | |
uc = model.get_learned_conditioning(batch_size_real * [""]) | |
if isinstance(prompts, tuple): | |
prompts = list(prompts) | |
# prompt | |
c = model.get_learned_conditioning(prompts) | |
shape = [opt.C, opt.H // opt.f, opt.W // opt.f] | |
samples, _ = sampler.sample(S=opt.steps, | |
conditioning=c, | |
batch_size=batch_size_real, #opt.n_samples, | |
shape=shape, | |
verbose=False, #False, | |
unconditional_guidance_scale=opt.scale, | |
unconditional_conditioning=uc, | |
eta=opt.ddim_eta, | |
x_T=start_code) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0) | |
# from [-1,1] to [0,1] | |
for x_sample in x_samples: | |
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') | |
img = Image.fromarray(x_sample.astype(np.uint8)) | |
img = put_watermark(img, wm_encoder) | |
img.save(os.path.join(sample_path, f"{base_count:05}.png")) | |
base_count += 1 | |
sample_count += 1 | |
if len(x_samples) != batch_size: #opt.n_samples: | |
x_samples = torch.concat( | |
[x_samples, torch.ones( | |
(batch_size - len(x_samples), ) + x_samples.shape[1:] | |
).to(x_samples.device)], dim=0 | |
) | |
all_samples.append(x_samples) | |
if sample_count >= sample_limit and len(all_samples): | |
grid_count = save_imgs_as_grid(all_samples, n_rows, wm_encoder, outpath, grid_count, save_form=save_form) | |
all_samples = [] | |
sample_count = 0 | |
if len(all_samples): | |
grid_count = save_imgs_as_grid(all_samples, n_rows, wm_encoder, outpath, grid_count, save_form=save_form) | |
print(f"Your samples are ready and waiting for you here: \n{outpath} \n" | |
f" \nEnjoy.") | |
def save_imgs_as_grid(all_samples, n_rows, wm_encoder, outpath, grid_count, save_form="png"): | |
# additionally, save as grid | |
grid = torch.stack(all_samples, 0) | |
grid = rearrange(grid, 'n b c h w -> (n b) c h w') | |
grid = make_grid(grid, nrow=n_rows) | |
# to image | |
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() | |
grid = Image.fromarray(grid.astype(np.uint8)) | |
grid = put_watermark(grid, wm_encoder) | |
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.{save_form}')) | |
grid_count += 1 | |
return grid_count | |
if __name__ == "__main__": | |
import os | |
from glob import glob | |
if not os.path.basename(os.getcwd()) == "stablediffusion": | |
os.chdir(os.path.join(os.getcwd(), "stablediffusion")) | |
print(os.getcwd()) | |
parser = parse_args() | |
opt = parser.parse_args() | |
# ckpt_list = ["epoch=000047-step=000148999.ckpt"] | |
# ckpt_list = ["epoch=000005-step=000015999.ckpt"] | |
ckpt_list = [ | |
"epoch=000000-step=000000999.ckpt", | |
"epoch=000004-step=000012999.ckpt", | |
"epoch=000007-step=000024999.ckpt", | |
"epoch=000012-step=000037999.ckpt", | |
"epoch=000015-step=000048999.ckpt", | |
"epoch=000016-step=000050999.ckpt", | |
"epoch=000020-step=000062999.ckpt", | |
"epoch=000023-step=000074999.ckpt", | |
"epoch=000027-step=000086999.ckpt", | |
"epoch=000031-step=000097999.ckpt", | |
"epoch=000031-step=000099999.ckpt", | |
"epoch=000032-step=000100999.ckpt", | |
"epoch=000039-step=000124999.ckpt", | |
"epoch=000047-step=000149999.ckpt", | |
"epoch=000063-step=000199999.ckpt" | |
] | |
# ckpt_list = ["epoch=000005-step=000003999.ckpt", "epoch=000007-step=000004999.ckpt"] | |
# ckpt_list = ["epoch=000007-step=000009999.ckpt", "epoch=000000-step=000000999.ckpt", "epoch=000014-step=000019999.ckpt"] | |
if opt.ckpt_folder is not None: | |
for ckpt in glob(opt.ckpt_folder + "/*.ckpt"): | |
if os.path.basename(ckpt) not in ckpt_list: | |
continue | |
opt.ckpt = ckpt | |
try: | |
main(opt) | |
except: | |
continue | |
else: | |
try: | |
main(opt) | |
except: | |
raise ValueError | |