File size: 6,376 Bytes
1f1b97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import gradio as gr
import random, os, shutil
from PIL import Image
import pandas as pd
import tempfile

def open_sd_ims(adj, group, seed):
    if group != '':
        if adj != '':
            prompt=adj+'_'+group.replace(' ','_')
            if os.path.isdir(prompt) == False:
                shutil.unpack_archive('zipped_images/stablediffusion/'+ prompt.replace(' ', '_') +'.zip', prompt, 'zip')
        else:
            prompt=group
            if os.path.isdir(prompt) == False:
                shutil.unpack_archive('zipped_images/stablediffusion/'+ prompt.replace(' ', '_') +'.zip', prompt, 'zip')
        imnames= os.listdir(prompt+'/Seed_'+ str(seed)+'/')
        images = [(Image.open(prompt+'/Seed_'+ str(seed)+'/'+name)) for name in imnames]
        return images[:9]
    
def open_ims(model, adj, group):
    seed = 48040
    with tempfile.TemporaryDirectory() as tmpdirname:
        print('created temporary directory', tmpdirname)
    if model == "Dall-E 2":
        if group != '':
            if adj != '':
                prompt=adj+'_'+group.replace(' ','_')
                if os.path.isdir(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt) == False:
                    shutil.unpack_archive('zipped_images/'+ model.replace(' ','').lower()+ '/'+ prompt.replace(' ', '_') +'.zip', tmpdirname+ '/'+ model.replace(' ','').lower()+ '/'+ prompt, 'zip')
            else:
                prompt=group
                if os.path.isdir(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt) == False:
                    shutil.unpack_archive('zipped_images/' + model.replace(' ','').lower() + '/'+ prompt.replace(' ', '_') +'.zip', tmpdirname + '/' + model.replace(' ','').lower()+ '/' + prompt, 'zip')
            imnames= os.listdir(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt+'/')
            images = [(Image.open(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt+'/'+name)).convert("RGB") for name in imnames]
            return images[:9]

    else:
        if group != '':
            if adj != '':
                prompt=adj+'_'+group.replace(' ','_')
                if os.path.isdir(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt) == False:
                    shutil.unpack_archive('zipped_images/'+ model.replace(' ','').lower()+ '/'+ prompt.replace(' ', '_') +'.zip',  tmpdirname + '/' +model.replace(' ','').lower()+ '/'+ prompt, 'zip')
            else:
                prompt=group
                if os.path.isdir(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt) == False:
                    shutil.unpack_archive('zipped_images/' + model.replace(' ','').lower() +  '/'+  prompt.replace(' ', '_') +'.zip', tmpdirname + '/' + model.replace(' ','').lower()+'/'+ prompt, 'zip')
            imnames= os.listdir(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt+'/'+'Seed_'+ str(seed)+'/')
            images = [(Image.open(tmpdirname + '/' + model.replace(' ','').lower()+ '/'+ prompt +'/'+'Seed_'+ str(seed)+'/'+name)) for name in imnames]
            return images[:9]


vowels = ["a","e","i","o","u"]
prompts = pd.read_csv('promptsadjectives.csv')

seeds = [46267, 48040, 51237, 54325, 60884, 64830, 67031, 72935, 92118, 93109]

m_adjectives = prompts['Masc-adj'].tolist()[:10]
f_adjectives = prompts['Fem-adj'].tolist()[:10]
adjectives = sorted(m_adjectives+f_adjectives)
#adjectives = ['attractive','strong']
adjectives.insert(0, '')
professions = sorted([p.lower() for p in prompts['Occupation-Noun'].tolist()])
models = ["Stable Diffusion 1.4", "Dall-E 2","Stable Diffusion 2"]

with gr.Blocks() as demo:
    gr.Markdown("# Diffusion Bias Explorer")
    gr.Markdown("## Choose from the prompts below to explore how the text-to-image models like [Stable Diffusion v1.4](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original), [Stable Diffusion v.2](https://huggingface.co/stabilityai/stable-diffusion-2) and [DALLE-2](https://openai.com/dall-e-2/) represent different professions and adjectives")
#    gr.Markdown("Some of the images for Dall-E 2 are missing -- we are still in the process of generating them! If you get an 'error', please pick another prompt.")
#    seed_choice = gr.State(0)
#    seed_choice = 93109
#    print("Seed choice is: " + str(seed_choice))
    with gr.Row():
        with gr.Column():
            model1 = gr.Dropdown(models, label = "Choose a model to compare results", value = models[0], interactive=True)
            adj1 = gr.Dropdown(adjectives, label = "Choose a first adjective (or leave this blank!)", interactive=True)
            choice1 = gr.Dropdown(professions, label = "Choose a first group", interactive=True)
#           seed1= gr.Dropdown(seeds, label = "Choose a random seed to compare results", value = seeds[1], interactive=True)
            images1 = gr.Gallery(label="Images").style(grid=[3], height="auto")
        with gr.Column():
            model2 = gr.Dropdown(models, label = "Choose a model to compare results", value = models[0], interactive=True)         
            adj2 = gr.Dropdown(adjectives, label = "Choose a second adjective (or leave this blank!)", interactive=True)
            choice2 = gr.Dropdown(professions, label = "Choose a second group", interactive=True)
#           seed2= gr.Dropdown(seeds, label = "Choose a random seed to compare results", value= seeds[1], interactive=True)
            images2 = gr.Gallery(label="Images").style(grid=[3], height="auto")

    gr.Markdown("### [Research](http://gender-decoder.katmatfield.com/static/documents/Gaucher-Friesen-Kay-JPSP-Gendered-Wording-in-Job-ads.pdf) has shown that \
                    certain words are considered more masculine- or feminine-coded based on how appealing job descriptions containing these words \
                    seemed to male and female research participants and to what extent the participants felt that they 'belonged' in that occupation.")


    #demo.load(random_image, None, [images])
    choice1.change(open_ims, [model1, adj1,choice1], [images1])
    choice2.change(open_ims, [model2, adj2,choice2], [images2])
    adj1.change(open_ims, [model1, adj1, choice1], [images1])
    adj2.change(open_ims, [model2, adj2, choice2], [images2])
#    seed1.change(open_ims, [adj1,choice1,seed1], [images1])
#    seed2.change(open_ims, [adj2,choice2,seed2], [images2])

demo.launch()