Update main.py
Browse files
main.py
CHANGED
@@ -7,17 +7,19 @@ import time
|
|
7 |
from typing import List, Optional, Union, Any
|
8 |
import httpx
|
9 |
from dotenv import load_dotenv
|
10 |
-
from fastapi import FastAPI
|
11 |
from fastapi.responses import JSONResponse, StreamingResponse
|
12 |
-
from pydantic import BaseModel
|
13 |
|
14 |
# --- Configuration ---
|
15 |
load_dotenv()
|
|
|
16 |
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
|
17 |
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
|
18 |
SNAPZION_API_KEY = os.environ.get("SNAP", "")
|
19 |
|
20 |
# --- Dummy Model Definitions ---
|
|
|
21 |
AVAILABLE_MODELS = [
|
22 |
{"id": "gpt-4-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
23 |
{"id": "gpt-4o", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
@@ -36,56 +38,35 @@ app = FastAPI(
|
|
36 |
|
37 |
# --- Helper Function for Random ID Generation ---
|
38 |
def generate_random_id(prefix: str, length: int = 29) -> str:
|
|
|
|
|
|
|
39 |
population = string.ascii_letters + string.digits
|
40 |
random_part = "".join(secrets.choice(population) for _ in range(length))
|
41 |
return f"{prefix}{random_part}"
|
42 |
|
43 |
-
# === Tool Call Models ===
|
44 |
-
class FunctionCall(BaseModel):
|
45 |
-
name: str
|
46 |
-
arguments: str
|
47 |
-
|
48 |
-
class ToolCall(BaseModel):
|
49 |
-
id: str
|
50 |
-
type: str = "function"
|
51 |
-
function: FunctionCall
|
52 |
-
|
53 |
-
# === Message Models ===
|
54 |
-
class Message(BaseModel):
|
55 |
-
role: str
|
56 |
-
content: Optional[str] = None
|
57 |
-
name: Optional[str] = None
|
58 |
-
tool_calls: Optional[List[ToolCall]] = None
|
59 |
-
tool_call_id: Optional[str] = None
|
60 |
-
|
61 |
# === API Endpoints ===
|
62 |
@app.get("/v1/models")
|
63 |
async def list_models():
|
|
|
64 |
return {"object": "list", "data": AVAILABLE_MODELS}
|
65 |
|
66 |
# === Chat Completion ===
|
|
|
|
|
|
|
|
|
67 |
class ChatRequest(BaseModel):
|
68 |
messages: List[Message]
|
69 |
model: str
|
70 |
stream: Optional[bool] = False
|
71 |
tools: Optional[Any] = None
|
72 |
|
73 |
-
def build_tool_prompt(tools: List[Any]) -> str:
|
74 |
-
tool_definitions = "\n".join([
|
75 |
-
f"- {tool['function']['name']}: {tool['function'].get('description', 'No description available')}"
|
76 |
-
for tool in tools
|
77 |
-
])
|
78 |
-
return f"""You have access to tools. To call a tool, respond with JSON inside <tool_call></tool_call> tags.
|
79 |
-
Available Tools:
|
80 |
-
{tool_definitions}
|
81 |
-
|
82 |
-
Response Format:
|
83 |
-
<tool_call>
|
84 |
-
{{"name": "tool_name", "parameters": {{"arg1": "value1"}}}}
|
85 |
-
</tool_call>"""
|
86 |
-
|
87 |
@app.post("/v1/chat/completions")
|
88 |
async def chat_completion(request: ChatRequest):
|
|
|
|
|
|
|
89 |
model_id = MODEL_ALIASES.get(request.model, request.model)
|
90 |
chat_id = generate_random_id("chatcmpl-")
|
91 |
headers = {
|
@@ -95,189 +76,191 @@ async def chat_completion(request: ChatRequest):
|
|
95 |
'referer': 'https://www.chatwithmono.xyz/',
|
96 |
'user-agent': 'Mozilla/5.0',
|
97 |
}
|
98 |
-
|
99 |
-
# Handle tool definitions
|
100 |
if request.tools:
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
request.messages[0].content += "\n\n" + tool_prompt
|
104 |
else:
|
105 |
-
request.messages.insert(0,
|
|
|
106 |
|
107 |
payload = {
|
108 |
-
"messages": [
|
109 |
"model": model_id
|
110 |
}
|
111 |
-
|
112 |
-
# Streaming response
|
113 |
if request.stream:
|
114 |
async def event_stream():
|
115 |
created = int(time.time())
|
116 |
-
|
117 |
-
|
118 |
is_tool_call = False
|
119 |
-
|
120 |
-
|
121 |
try:
|
122 |
async with httpx.AsyncClient(timeout=120) as client:
|
123 |
-
async with client.stream("POST", "https://www.chatwithmono.xyz/api/chat",
|
124 |
-
headers=headers, json=payload) as response:
|
125 |
response.raise_for_status()
|
126 |
async for line in response.aiter_lines():
|
127 |
-
if not line:
|
128 |
-
continue
|
129 |
if line.startswith("0:"):
|
130 |
try:
|
131 |
content_piece = json.loads(line[2:])
|
132 |
-
|
|
|
133 |
if len(chunks_buffer) < max_initial_chunks:
|
134 |
chunks_buffer.append(content_piece)
|
135 |
continue
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
full_buffer = ''.join(chunks_buffer + [content_piece])
|
140 |
if "<tool_call>" in full_buffer:
|
|
|
141 |
is_tool_call = True
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
else:
|
145 |
-
|
146 |
-
if chunks_buffer:
|
147 |
-
delta = {"content": "".join(chunks_buffer)}
|
148 |
-
if not tool_call_content: # Only add role in first chunk
|
149 |
-
delta["role"] = "assistant"
|
150 |
-
yield create_chunk(chat_id, created, model_id, delta)
|
151 |
-
chunks_buffer = []
|
152 |
-
|
153 |
-
# Send current chunk
|
154 |
-
delta = {"content": content_piece}
|
155 |
-
yield create_chunk(chat_id, created, model_id, delta)
|
156 |
else:
|
157 |
-
|
158 |
-
|
159 |
-
if
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
elif line.startswith(("e:", "d:")):
|
|
|
|
|
|
|
182 |
break
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
except httpx.HTTPStatusError as e:
|
185 |
error_content = {
|
186 |
"error": {
|
187 |
-
"message": f"Upstream error: {e.response.status_code}",
|
188 |
-
"type": "upstream_error",
|
189 |
-
"code": str(e.response.status_code)
|
190 |
}
|
191 |
}
|
192 |
yield f"data: {json.dumps(error_content)}\n\n"
|
193 |
finally:
|
194 |
-
# Finish signal
|
195 |
-
done_chunk = {
|
196 |
-
"id": chat_id,
|
197 |
-
"object": "chat.completion.chunk",
|
198 |
-
"created": created,
|
199 |
-
"model": model_id,
|
200 |
-
"choices": [{
|
201 |
-
"index": 0,
|
202 |
-
"delta": {},
|
203 |
-
"finish_reason": "stop"
|
204 |
-
}]
|
205 |
-
}
|
206 |
-
yield f"data: {json.dumps(done_chunk)}\n\n"
|
207 |
yield "data: [DONE]\n\n"
|
208 |
-
|
209 |
return StreamingResponse(event_stream(), media_type="text/event-stream")
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
try:
|
214 |
async with httpx.AsyncClient(timeout=120) as client:
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
try:
|
225 |
-
content += json.loads(line[2:])
|
226 |
-
except json.JSONDecodeError:
|
227 |
-
continue
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
tool_call_data = json.loads(tool_call_str)
|
234 |
-
tool_call = ToolCall(
|
235 |
-
id=generate_random_id("call_"),
|
236 |
-
function=FunctionCall(
|
237 |
-
name=tool_call_data["name"],
|
238 |
-
arguments=json.dumps(tool_call_data.get("parameters", {}))
|
239 |
-
)
|
240 |
-
tool_calls = [tool_call.model_dump()]
|
241 |
-
content = None # Clear content for tool call
|
242 |
-
except (json.JSONDecodeError, KeyError) as e:
|
243 |
-
print(f"Tool call parsing error: {e}")
|
244 |
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
},
|
257 |
-
"finish_reason": "tool_calls" if tool_calls else "stop"
|
258 |
-
}],
|
259 |
-
"usage": {
|
260 |
-
"prompt_tokens": 0,
|
261 |
-
"completion_tokens": 0,
|
262 |
-
"total_tokens": 0
|
263 |
-
}
|
264 |
-
})
|
265 |
-
|
266 |
except httpx.HTTPStatusError as e:
|
267 |
-
return JSONResponse(
|
268 |
-
status_code=502,
|
269 |
-
content={"error": {"message": f"Upstream error: {e.response.text}", "type": "upstream_error"}}
|
270 |
-
)
|
271 |
|
272 |
-
def create_chunk(chat_id: str, created: int, model: str, delta: dict) -> str:
|
273 |
-
chunk = {
|
274 |
-
"id": chat_id,
|
275 |
-
"object": "chat.completion.chunk",
|
276 |
-
"created": created,
|
277 |
-
"model": model,
|
278 |
-
"choices": [{"index": 0, "delta": delta}]
|
279 |
-
}
|
280 |
-
return f"data: {json.dumps(chunk)}\n\n"
|
281 |
|
282 |
# === Image Generation ===
|
283 |
class ImageGenerationRequest(BaseModel):
|
@@ -289,65 +272,40 @@ class ImageGenerationRequest(BaseModel):
|
|
289 |
|
290 |
@app.post("/v1/images/generations")
|
291 |
async def generate_images(request: ImageGenerationRequest):
|
|
|
292 |
results = []
|
293 |
try:
|
294 |
async with httpx.AsyncClient(timeout=120) as client:
|
295 |
for _ in range(request.n):
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
headers={'Content-Type': 'application/json'}
|
302 |
-
)
|
303 |
resp.raise_for_status()
|
304 |
data = resp.json()
|
305 |
b64_image = data.get("image")
|
306 |
-
|
307 |
-
if not b64_image:
|
308 |
-
raise HTTPException(502, "Missing image in response")
|
309 |
-
|
310 |
-
# Upload to Snapzion if API key available
|
311 |
if SNAPZION_API_KEY:
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
files=files,
|
316 |
-
headers={"Authorization": SNAPZION_API_KEY}
|
317 |
-
)
|
318 |
upload_resp.raise_for_status()
|
319 |
-
|
|
|
320 |
else:
|
321 |
image_url = f"data:image/png;base64,{b64_image}"
|
322 |
-
|
323 |
-
results.append({
|
324 |
-
"url": image_url,
|
325 |
-
"b64_json": b64_image,
|
326 |
-
"revised_prompt": data.get("revised_prompt", request.prompt)
|
327 |
-
})
|
328 |
else:
|
329 |
-
|
330 |
-
params = {"prompt": request.prompt, "aspect_ratio": request.aspect_ratio}
|
331 |
resp = await client.get(IMAGE_API_URL, params=params)
|
332 |
resp.raise_for_status()
|
333 |
data = resp.json()
|
334 |
-
results.append({
|
335 |
-
"url": data.get("image_link"),
|
336 |
-
"b64_json": data.get("base64_output"),
|
337 |
-
"revised_prompt": request.prompt
|
338 |
-
})
|
339 |
-
|
340 |
except httpx.HTTPStatusError as e:
|
341 |
-
return JSONResponse(
|
342 |
-
status_code=502,
|
343 |
-
content={"error": f"Image service error: {e.response.status_code}"}
|
344 |
-
)
|
345 |
except Exception as e:
|
346 |
-
return JSONResponse(
|
347 |
-
status_code=500,
|
348 |
-
content={"error": f"Internal error: {str(e)}"}
|
349 |
-
)
|
350 |
-
|
351 |
return {"created": int(time.time()), "data": results}
|
352 |
|
353 |
# === Moderation Endpoint ===
|
@@ -357,76 +315,67 @@ class ModerationRequest(BaseModel):
|
|
357 |
|
358 |
@app.post("/v1/moderations")
|
359 |
async def create_moderation(request: ModerationRequest):
|
|
|
|
|
|
|
|
|
360 |
input_texts = [request.input] if isinstance(request.input, str) else request.input
|
361 |
if not input_texts:
|
362 |
-
|
363 |
-
|
364 |
-
content={"error": "At least one input string is required"}
|
365 |
-
)
|
366 |
-
|
367 |
headers = {
|
368 |
'Content-Type': 'application/json',
|
369 |
-
'User-Agent': 'Mozilla/5.0',
|
370 |
'Referer': 'https://www.chatwithmono.xyz/',
|
371 |
}
|
372 |
-
|
373 |
results = []
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
json={"text": text},
|
380 |
-
headers=headers
|
381 |
-
)
|
382 |
resp.raise_for_status()
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
flagged = data.get("overall_sentiment") == "flagged"
|
387 |
-
categories = data.get("categories", {})
|
388 |
openai_categories = {
|
389 |
-
"hate":
|
390 |
-
"
|
391 |
-
"self-harm":
|
392 |
-
"sexual":
|
393 |
-
"
|
394 |
-
"violence": categories.get("violence", False),
|
395 |
-
"violence/graphic": False,
|
396 |
}
|
397 |
-
|
|
|
398 |
result_item = {
|
399 |
"flagged": flagged,
|
400 |
"categories": openai_categories,
|
401 |
-
"category_scores":
|
402 |
}
|
403 |
-
|
404 |
-
#
|
405 |
-
|
406 |
-
|
407 |
-
|
|
|
|
|
408 |
results.append(result_item)
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
"hate", "hate/threatening", "self-harm",
|
419 |
-
"sexual", "sexual/minors", "violence", "violence/graphic"
|
420 |
-
]}
|
421 |
-
})
|
422 |
-
|
423 |
-
return {
|
424 |
"id": generate_random_id("modr-"),
|
425 |
"model": request.model,
|
426 |
-
"results": results
|
427 |
}
|
|
|
428 |
|
429 |
# --- Main Execution ---
|
430 |
if __name__ == "__main__":
|
431 |
import uvicorn
|
432 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
7 |
from typing import List, Optional, Union, Any
|
8 |
import httpx
|
9 |
from dotenv import load_dotenv
|
10 |
+
from fastapi import FastAPI
|
11 |
from fastapi.responses import JSONResponse, StreamingResponse
|
12 |
+
from pydantic import BaseModel
|
13 |
|
14 |
# --- Configuration ---
|
15 |
load_dotenv()
|
16 |
+
# Env variables for external services
|
17 |
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
|
18 |
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
|
19 |
SNAPZION_API_KEY = os.environ.get("SNAP", "")
|
20 |
|
21 |
# --- Dummy Model Definitions ---
|
22 |
+
# In a real application, these would be defined properly.
|
23 |
AVAILABLE_MODELS = [
|
24 |
{"id": "gpt-4-turbo", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
25 |
{"id": "gpt-4o", "object": "model", "created": int(time.time()), "owned_by": "system"},
|
|
|
38 |
|
39 |
# --- Helper Function for Random ID Generation ---
|
40 |
def generate_random_id(prefix: str, length: int = 29) -> str:
|
41 |
+
"""
|
42 |
+
Generates a cryptographically secure, random alphanumeric ID.
|
43 |
+
"""
|
44 |
population = string.ascii_letters + string.digits
|
45 |
random_part = "".join(secrets.choice(population) for _ in range(length))
|
46 |
return f"{prefix}{random_part}"
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
# === API Endpoints ===
|
49 |
@app.get("/v1/models")
|
50 |
async def list_models():
|
51 |
+
"""Lists the available models."""
|
52 |
return {"object": "list", "data": AVAILABLE_MODELS}
|
53 |
|
54 |
# === Chat Completion ===
|
55 |
+
class Message(BaseModel):
|
56 |
+
role: str
|
57 |
+
content: str
|
58 |
+
|
59 |
class ChatRequest(BaseModel):
|
60 |
messages: List[Message]
|
61 |
model: str
|
62 |
stream: Optional[bool] = False
|
63 |
tools: Optional[Any] = None
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
@app.post("/v1/chat/completions")
|
66 |
async def chat_completion(request: ChatRequest):
|
67 |
+
"""
|
68 |
+
Handles chat completion requests, supporting both streaming and non-streaming responses.
|
69 |
+
"""
|
70 |
model_id = MODEL_ALIASES.get(request.model, request.model)
|
71 |
chat_id = generate_random_id("chatcmpl-")
|
72 |
headers = {
|
|
|
76 |
'referer': 'https://www.chatwithmono.xyz/',
|
77 |
'user-agent': 'Mozilla/5.0',
|
78 |
}
|
|
|
|
|
79 |
if request.tools:
|
80 |
+
# Handle tool by giving in system prompt.
|
81 |
+
# Tool call must be encoded in <tool_call><tool_call> XML tag.
|
82 |
+
tool_prompt = f"""You have access to the following tools . To call a tool, please respond with JSON for a tool call within <tool_call><tool_call> XML tag. Respond in the format {{"name": tool name, "parameters": dictionary of argument name and its value}}. Do not use variables.
|
83 |
+
Tools:
|
84 |
+
{";".join(f"<tool>{tool}</tool>" for tool in request.tools)}
|
85 |
+
|
86 |
+
Response Format for tool call:
|
87 |
+
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
|
88 |
+
<tool_call>
|
89 |
+
{{"name": <function-name>, "arguments": <args-json-object>}}
|
90 |
+
</tool_call>
|
91 |
+
|
92 |
+
Example of tool calling:
|
93 |
+
<tool_call>
|
94 |
+
{{"name": "get_weather", "parameters": {{"city": "New York"}}}}
|
95 |
+
</tool_call>
|
96 |
+
|
97 |
+
Using tools is recommended.
|
98 |
+
"""
|
99 |
+
if request.messages[0].role == "system":
|
100 |
request.messages[0].content += "\n\n" + tool_prompt
|
101 |
else:
|
102 |
+
request.messages.insert(0, {"role": "system", "content": tool_prompt})
|
103 |
+
request_data = request.model_dump(exclude_unset=True)
|
104 |
|
105 |
payload = {
|
106 |
+
"messages": request_data["messages"],
|
107 |
"model": model_id
|
108 |
}
|
|
|
|
|
109 |
if request.stream:
|
110 |
async def event_stream():
|
111 |
created = int(time.time())
|
112 |
+
is_first_chunk = True
|
113 |
+
usage_info = None
|
114 |
is_tool_call = False
|
115 |
+
chunks_buffer = []
|
116 |
+
max_initial_chunks = 4 # Number of initial chunks to buffer
|
117 |
try:
|
118 |
async with httpx.AsyncClient(timeout=120) as client:
|
119 |
+
async with client.stream("POST", "https://www.chatwithmono.xyz/api/chat", headers=headers, json=payload) as response:
|
|
|
120 |
response.raise_for_status()
|
121 |
async for line in response.aiter_lines():
|
122 |
+
if not line: continue
|
|
|
123 |
if line.startswith("0:"):
|
124 |
try:
|
125 |
content_piece = json.loads(line[2:])
|
126 |
+
print(content_piece)
|
127 |
+
# Buffer the first few chunks
|
128 |
if len(chunks_buffer) < max_initial_chunks:
|
129 |
chunks_buffer.append(content_piece)
|
130 |
continue
|
131 |
+
# Process the buffered chunks if we haven't already
|
132 |
+
if chunks_buffer and not is_tool_call:
|
133 |
+
full_buffer = ''.join(chunks_buffer)
|
|
|
134 |
if "<tool_call>" in full_buffer:
|
135 |
+
print("Tool call detected")
|
136 |
is_tool_call = True
|
137 |
+
|
138 |
+
# Process the current chunk
|
139 |
+
if is_tool_call:
|
140 |
+
chunks_buffer.append(content_piece)
|
141 |
+
|
142 |
+
full_buffer = ''.join(chunks_buffer)
|
143 |
+
|
144 |
+
if "</tool_call>" in full_buffer:
|
145 |
+
print("Tool call End detected")
|
146 |
+
# Process tool call in the current chunk
|
147 |
+
tool_call_str = full_buffer.split("<tool_call>")[1].split("</tool_call>")[0]
|
148 |
+
tool_call_json = json.loads(tool_call_str.strip())
|
149 |
+
delta = {
|
150 |
+
"content": None,
|
151 |
+
"tool_calls": [{
|
152 |
+
"index": 0,
|
153 |
+
"id": generate_random_id("call_"),
|
154 |
+
"type": "function",
|
155 |
+
"function": {
|
156 |
+
"name": tool_call_json["name"],
|
157 |
+
"arguments": json.dumps(tool_call_json["parameters"])
|
158 |
+
}
|
159 |
+
}]
|
160 |
+
}
|
161 |
+
chunk_data = {
|
162 |
+
"id": chat_id, "object": "chat.completion.chunk", "created": created,
|
163 |
+
"model": model_id,
|
164 |
+
"choices": [{"index": 0, "delta": delta, "finish_reason": None}],
|
165 |
+
"usage": None
|
166 |
+
}
|
167 |
+
yield f"data: {json.dumps(chunk_data)}\n\n"
|
168 |
else:
|
169 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
else:
|
171 |
+
|
172 |
+
# Regular content
|
173 |
+
if is_first_chunk:
|
174 |
+
delta = {"content": "".join(chunks_buffer), "tool_calls": None}
|
175 |
+
delta["role"] = "assistant"
|
176 |
+
is_first_chunk = False
|
177 |
+
chunk_data = {
|
178 |
+
"id": chat_id, "object": "chat.completion.chunk", "created": created,
|
179 |
+
"model": model_id,
|
180 |
+
"choices": [{"index": 0, "delta": delta, "finish_reason": None}],
|
181 |
+
"usage": None
|
182 |
+
}
|
183 |
+
yield f"data: {json.dumps(chunk_data)}\n\n"
|
184 |
+
|
185 |
+
delta = {"content": content_piece, "tool_calls": None}
|
186 |
+
|
187 |
+
chunk_data = {
|
188 |
+
"id": chat_id, "object": "chat.completion.chunk", "created": created,
|
189 |
+
"model": model_id,
|
190 |
+
"choices": [{"index": 0, "delta": delta, "finish_reason": None}],
|
191 |
+
"usage": None
|
192 |
+
}
|
193 |
+
yield f"data: {json.dumps(chunk_data)}\n\n"
|
194 |
+
except json.JSONDecodeError: continue
|
195 |
elif line.startswith(("e:", "d:")):
|
196 |
+
try:
|
197 |
+
usage_info = json.loads(line[2:]).get("usage")
|
198 |
+
except (json.JSONDecodeError, AttributeError): pass
|
199 |
break
|
200 |
|
201 |
+
final_usage = None
|
202 |
+
if usage_info:
|
203 |
+
prompt_tokens = usage_info.get("promptTokens", 0)
|
204 |
+
completion_tokens = usage_info.get("completionTokens", 0)
|
205 |
+
final_usage = {
|
206 |
+
"prompt_tokens": prompt_tokens, "completion_tokens": completion_tokens,
|
207 |
+
"total_tokens": prompt_tokens + completion_tokens,
|
208 |
+
}
|
209 |
+
done_chunk = {
|
210 |
+
"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
|
211 |
+
"choices": [{
|
212 |
+
"index": 0,
|
213 |
+
"delta": {"role": "assistant", "content": None, "function_call": None, "tool_calls": None},
|
214 |
+
"finish_reason": "stop"
|
215 |
+
}],
|
216 |
+
"usage": final_usage
|
217 |
+
}
|
218 |
+
yield f"data: {json.dumps(done_chunk)}\n\n"
|
219 |
except httpx.HTTPStatusError as e:
|
220 |
error_content = {
|
221 |
"error": {
|
222 |
+
"message": f"Upstream API error: {e.response.status_code}. Details: {e.response.text}",
|
223 |
+
"type": "upstream_error", "code": str(e.response.status_code)
|
|
|
224 |
}
|
225 |
}
|
226 |
yield f"data: {json.dumps(error_content)}\n\n"
|
227 |
finally:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
yield "data: [DONE]\n\n"
|
|
|
229 |
return StreamingResponse(event_stream(), media_type="text/event-stream")
|
230 |
+
else: # Non-streaming
|
231 |
+
assistant_response, usage_info = "", {}
|
232 |
+
tool_call_json = None
|
233 |
try:
|
234 |
async with httpx.AsyncClient(timeout=120) as client:
|
235 |
+
async with client.stream("POST", "https://www.chatwithmono.xyz/api/chat", headers=headers, json=payload) as response:
|
236 |
+
response.raise_for_status()
|
237 |
+
async for chunk in response.aiter_lines():
|
238 |
+
if chunk.startswith("0:"):
|
239 |
+
try: assistant_response += json.loads(chunk[2:])
|
240 |
+
except: continue
|
241 |
+
elif chunk.startswith(("e:", "d:")):
|
242 |
+
try: usage_info = json.loads(chunk[2:]).get("usage", {})
|
243 |
+
except: continue
|
|
|
|
|
|
|
|
|
244 |
|
245 |
+
if "<tool_call>" in assistant_response and "</tool_call>" in assistant_response:
|
246 |
+
tool_call_str = assistant_response.split("<tool_call>")[1].split("</tool_call>")[0]
|
247 |
+
tool_call = json.loads(tool_call_str.strip())
|
248 |
+
tool_call_json = [{"id": generate_random_id("call_"),"function": {"name": tool_call["name"], "arguments": json.dumps(tool_call["parameters"])}}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
+
|
251 |
+
|
252 |
+
return JSONResponse(content={
|
253 |
+
"id": chat_id, "object": "chat.completion", "created": int(time.time()), "model": model_id,
|
254 |
+
"choices": [{"index": 0, "message": {"role": "assistant", "content": assistant_response if tool_call_json is None else None, "tool_calls": tool_call_json}, "finish_reason": "stop"}],
|
255 |
+
"usage": {
|
256 |
+
"prompt_tokens": usage_info.get("promptTokens", 0),
|
257 |
+
"completion_tokens": usage_info.get("completionTokens", 0),
|
258 |
+
"total_tokens": usage_info.get("promptTokens", 0) + usage_info.get("completionTokens", 0),
|
259 |
+
}
|
260 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
except httpx.HTTPStatusError as e:
|
262 |
+
return JSONResponse(status_code=e.response.status_code, content={"error": {"message": f"Upstream API error. Details: {e.response.text}", "type": "upstream_error"}})
|
|
|
|
|
|
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
# === Image Generation ===
|
266 |
class ImageGenerationRequest(BaseModel):
|
|
|
272 |
|
273 |
@app.post("/v1/images/generations")
|
274 |
async def generate_images(request: ImageGenerationRequest):
|
275 |
+
"""Handles image generation requests."""
|
276 |
results = []
|
277 |
try:
|
278 |
async with httpx.AsyncClient(timeout=120) as client:
|
279 |
for _ in range(request.n):
|
280 |
+
model = request.model or "default"
|
281 |
+
if model in ["gpt-image-1", "dall-e-3", "dall-e-2", "nextlm-image-1"]:
|
282 |
+
headers = {'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/'}
|
283 |
+
payload = {"prompt": request.prompt, "model": model}
|
284 |
+
resp = await client.post("https://www.chatwithmono.xyz/api/image", headers=headers, json=payload)
|
|
|
|
|
285 |
resp.raise_for_status()
|
286 |
data = resp.json()
|
287 |
b64_image = data.get("image")
|
288 |
+
if not b64_image: return JSONResponse(status_code=502, content={"error": "Missing base64 image in response"})
|
|
|
|
|
|
|
|
|
289 |
if SNAPZION_API_KEY:
|
290 |
+
upload_headers = {"Authorization": SNAPZION_API_KEY}
|
291 |
+
upload_files = {'file': ('image.png', base64.b64decode(b64_image), 'image/png')}
|
292 |
+
upload_resp = await client.post(SNAPZION_UPLOAD_URL, headers=upload_headers, files=upload_files)
|
|
|
|
|
|
|
293 |
upload_resp.raise_for_status()
|
294 |
+
upload_data = upload_resp.json()
|
295 |
+
image_url = upload_data.get("url")
|
296 |
else:
|
297 |
image_url = f"data:image/png;base64,{b64_image}"
|
298 |
+
results.append({"url": image_url, "b64_json": b64_image, "revised_prompt": data.get("revised_prompt")})
|
|
|
|
|
|
|
|
|
|
|
299 |
else:
|
300 |
+
params = {"prompt": request.prompt, "aspect_ratio": request.aspect_ratio, "link": "typegpt.net"}
|
|
|
301 |
resp = await client.get(IMAGE_API_URL, params=params)
|
302 |
resp.raise_for_status()
|
303 |
data = resp.json()
|
304 |
+
results.append({"url": data.get("image_link"), "b64_json": data.get("base64_output")})
|
|
|
|
|
|
|
|
|
|
|
305 |
except httpx.HTTPStatusError as e:
|
306 |
+
return JSONResponse(status_code=502, content={"error": f"Image generation failed. Upstream error: {e.response.status_code}", "details": e.response.text})
|
|
|
|
|
|
|
307 |
except Exception as e:
|
308 |
+
return JSONResponse(status_code=500, content={"error": "An internal error occurred.", "details": str(e)})
|
|
|
|
|
|
|
|
|
309 |
return {"created": int(time.time()), "data": results}
|
310 |
|
311 |
# === Moderation Endpoint ===
|
|
|
315 |
|
316 |
@app.post("/v1/moderations")
|
317 |
async def create_moderation(request: ModerationRequest):
|
318 |
+
"""
|
319 |
+
Handles moderation requests, conforming to the OpenAI API specification.
|
320 |
+
Includes a custom 'reason' field in the result if provided by the upstream API.
|
321 |
+
"""
|
322 |
input_texts = [request.input] if isinstance(request.input, str) else request.input
|
323 |
if not input_texts:
|
324 |
+
return JSONResponse(status_code=400, content={"error": {"message": "Request must have at least one input string.", "type": "invalid_request_error"}})
|
325 |
+
moderation_url = "https://www.chatwithmono.xyz/api/moderation"
|
|
|
|
|
|
|
326 |
headers = {
|
327 |
'Content-Type': 'application/json',
|
328 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36',
|
329 |
'Referer': 'https://www.chatwithmono.xyz/',
|
330 |
}
|
|
|
331 |
results = []
|
332 |
+
try:
|
333 |
+
async with httpx.AsyncClient(timeout=30) as client:
|
334 |
+
for text_input in input_texts:
|
335 |
+
payload = {"text": text_input}
|
336 |
+
resp = await client.post(moderation_url, headers=headers, json=payload)
|
|
|
|
|
|
|
337 |
resp.raise_for_status()
|
338 |
+
upstream_data = resp.json()
|
339 |
+
# --- Transform upstream response to OpenAI format ---
|
340 |
+
upstream_categories = upstream_data.get("categories", {})
|
|
|
|
|
341 |
openai_categories = {
|
342 |
+
"hate": upstream_categories.get("hate", False), "hate/threatening": False,
|
343 |
+
"harassment": False, "harassment/threatening": False,
|
344 |
+
"self-harm": upstream_categories.get("self-harm", False), "self-harm/intent": False, "self-harm/instructions": False,
|
345 |
+
"sexual": upstream_categories.get("sexual", False), "sexual/minors": False,
|
346 |
+
"violence": upstream_categories.get("violence", False), "violence/graphic": False,
|
|
|
|
|
347 |
}
|
348 |
+
category_scores = {k: 1.0 if v else 0.0 for k, v in openai_categories.items()}
|
349 |
+
flagged = upstream_data.get("overall_sentiment") == "flagged"
|
350 |
result_item = {
|
351 |
"flagged": flagged,
|
352 |
"categories": openai_categories,
|
353 |
+
"category_scores": category_scores,
|
354 |
}
|
355 |
+
|
356 |
+
# --- NEW: Conditionally add the 'reason' field ---
|
357 |
+
# This is a custom extension to the OpenAI spec to provide more detail.
|
358 |
+
reason = upstream_data.get("reason")
|
359 |
+
if reason:
|
360 |
+
result_item["reason"] = reason
|
361 |
+
|
362 |
results.append(result_item)
|
363 |
+
except httpx.HTTPStatusError as e:
|
364 |
+
return JSONResponse(
|
365 |
+
status_code=502, # Bad Gateway
|
366 |
+
content={"error": {"message": f"Moderation failed. Upstream error: {e.response.status_code}", "type": "upstream_error", "details": e.response.text}}
|
367 |
+
)
|
368 |
+
except Exception as e:
|
369 |
+
return JSONResponse(status_code=500, content={"error": {"message": "An internal error occurred during moderation.", "type": "internal_error", "details": str(e)}})
|
370 |
+
# Build the final OpenAI-compatible response
|
371 |
+
final_response = {
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
"id": generate_random_id("modr-"),
|
373 |
"model": request.model,
|
374 |
+
"results": results,
|
375 |
}
|
376 |
+
return JSONResponse(content=final_response)
|
377 |
|
378 |
# --- Main Execution ---
|
379 |
if __name__ == "__main__":
|
380 |
import uvicorn
|
381 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|