Update main.py
Browse files
main.py
CHANGED
@@ -5,6 +5,7 @@ import secrets
|
|
5 |
import string
|
6 |
import time
|
7 |
import tempfile
|
|
|
8 |
from typing import List, Optional, Union, Any
|
9 |
|
10 |
import httpx
|
@@ -18,8 +19,6 @@ from gradio_client import Client, handle_file
|
|
18 |
|
19 |
# --- Configuration ---
|
20 |
load_dotenv()
|
21 |
-
|
22 |
-
# Env variables for external services
|
23 |
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
|
24 |
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
|
25 |
SNAPZION_API_KEY = os.environ.get("SNAP", "")
|
@@ -42,9 +41,8 @@ MODEL_ALIASES = {}
|
|
42 |
app = FastAPI(
|
43 |
title="OpenAI Compatible API",
|
44 |
description="An adapter for various services to be compatible with the OpenAI API specification.",
|
45 |
-
version="1.1.
|
46 |
)
|
47 |
-
|
48 |
try:
|
49 |
ocr_client = Client("multimodalart/Florence-2-l4")
|
50 |
except Exception as e:
|
@@ -56,28 +54,23 @@ except Exception as e:
|
|
56 |
class Message(BaseModel):
|
57 |
role: str
|
58 |
content: str
|
59 |
-
|
60 |
class ChatRequest(BaseModel):
|
61 |
messages: List[Message]
|
62 |
model: str
|
63 |
stream: Optional[bool] = False
|
64 |
tools: Optional[Any] = None
|
65 |
-
|
66 |
class ImageGenerationRequest(BaseModel):
|
67 |
prompt: str
|
68 |
aspect_ratio: Optional[str] = "1:1"
|
69 |
n: Optional[int] = 1
|
70 |
user: Optional[str] = None
|
71 |
model: Optional[str] = "default"
|
72 |
-
|
73 |
class ModerationRequest(BaseModel):
|
74 |
input: Union[str, List[str]]
|
75 |
model: Optional[str] = "text-moderation-stable"
|
76 |
-
|
77 |
class OcrRequest(BaseModel):
|
78 |
image_url: Optional[str] = Field(None, description="URL of the image to process.")
|
79 |
image_b64: Optional[str] = Field(None, description="Base64 encoded string of the image to process.")
|
80 |
-
|
81 |
@model_validator(mode='before')
|
82 |
@classmethod
|
83 |
def check_sources(cls, data: Any) -> Any:
|
@@ -87,7 +80,6 @@ class OcrRequest(BaseModel):
|
|
87 |
if data.get('image_url') and data.get('image_b64'):
|
88 |
raise ValueError('Provide either image_url or image_b64, not both.')
|
89 |
return data
|
90 |
-
|
91 |
class OcrResponse(BaseModel):
|
92 |
ocr_text: str
|
93 |
raw_response: dict
|
@@ -102,192 +94,102 @@ def generate_random_id(prefix: str, length: int = 29) -> str:
|
|
102 |
|
103 |
@app.get("/v1/models", tags=["Models"])
|
104 |
async def list_models():
|
105 |
-
"""Lists the available models."""
|
106 |
return {"object": "list", "data": AVAILABLE_MODELS}
|
107 |
|
108 |
-
# (Chat, Image Generation, and Moderation endpoints are unchanged)
|
109 |
@app.post("/v1/chat/completions", tags=["Chat"])
|
110 |
async def chat_completion(request: ChatRequest):
|
111 |
-
""
|
112 |
-
model_id = MODEL_ALIASES.get(request.model, request.model)
|
113 |
-
chat_id = generate_random_id("chatcmpl-")
|
114 |
-
headers = {
|
115 |
-
'accept': 'text/event-stream',
|
116 |
-
'content-type': 'application/json',
|
117 |
-
'origin': 'https://www.chatwithmono.xyz',
|
118 |
-
'referer': 'https://www.chatwithmono.xyz/',
|
119 |
-
'user-agent': 'Mozilla/5.0',
|
120 |
-
}
|
121 |
-
|
122 |
if request.tools:
|
123 |
-
tool_prompt
|
124 |
Tools: {";".join(f"<tool>{tool}</tool>" for tool in request.tools)}
|
125 |
Response Format for tool call:
|
126 |
<tool_call>
|
127 |
{{"name": <function-name>, "arguments": <args-json-object>}}
|
128 |
</tool_call>"""
|
129 |
-
if request.messages[0].role
|
130 |
-
|
131 |
-
|
132 |
-
request.messages.insert(0, Message(role="system", content=tool_prompt))
|
133 |
-
|
134 |
-
payload = {"messages": [msg.model_dump() for msg in request.messages], "model": model_id}
|
135 |
-
|
136 |
if request.stream:
|
137 |
async def event_stream():
|
138 |
-
created
|
139 |
-
usage_info = None
|
140 |
-
is_first_chunk = True
|
141 |
-
tool_call_buffer = ""
|
142 |
-
in_tool_call = False
|
143 |
-
|
144 |
try:
|
145 |
-
async with httpx.AsyncClient(timeout=120)
|
146 |
-
async with client.stream("POST",
|
147 |
response.raise_for_status()
|
148 |
async for line in response.aiter_lines():
|
149 |
-
if not line:
|
150 |
if line.startswith("0:"):
|
151 |
-
try:
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
delta = {
|
164 |
-
"content": None,
|
165 |
-
"tool_calls": [{"index": 0, "id": generate_random_id("call_"), "type": "function",
|
166 |
-
"function": {"name": tool_json["name"], "arguments": json.dumps(tool_json["parameters"])}}]
|
167 |
-
}
|
168 |
-
chunk = {"id": chat_id, "object": "chat.completion.chunk", "created": created, "model": model_id,
|
169 |
-
"choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
|
170 |
-
yield f"data: {json.dumps(chunk)}\n\n"
|
171 |
-
|
172 |
-
in_tool_call = False
|
173 |
-
tool_call_buffer = ""
|
174 |
-
remaining_text = current_buffer.split("</tool_call>", 1)[1]
|
175 |
-
if remaining_text:
|
176 |
-
content_piece = remaining_text
|
177 |
-
else:
|
178 |
-
continue
|
179 |
-
|
180 |
-
if "<tool_call>" in content_piece:
|
181 |
-
in_tool_call = True
|
182 |
-
tool_call_buffer += content_piece.split("<tool_call>", 1)[1]
|
183 |
-
text_before = content_piece.split("<tool_call>", 1)[0]
|
184 |
if text_before:
|
185 |
-
delta
|
186 |
-
|
187 |
-
"choices": [{"index": 0, "delta": delta, "finish_reason": None}], "usage": None}
|
188 |
-
yield f"data: {json.dumps(chunk)}\n\n"
|
189 |
-
if "</tool_call>" not in tool_call_buffer:
|
190 |
-
continue
|
191 |
-
|
192 |
if not in_tool_call:
|
193 |
-
delta
|
194 |
-
if is_first_chunk:
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
yield f"data: {json.dumps(chunk)}\n\n"
|
200 |
-
|
201 |
-
elif line.startswith(("e:", "d:")):
|
202 |
-
try:
|
203 |
-
usage_info = json.loads(line[2:]).get("usage")
|
204 |
-
except (json.JSONDecodeError, AttributeError): pass
|
205 |
break
|
206 |
-
|
207 |
-
final_usage
|
208 |
-
if
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
yield f"data: {json.dumps(done_chunk)}\n\n"
|
213 |
-
|
214 |
-
except httpx.HTTPStatusError as e:
|
215 |
-
error_content = {"error": {"message": f"Upstream API error: {e.response.status_code}. Details: {e.response.text}", "type": "upstream_error", "code": str(e.response.status_code)}}
|
216 |
-
yield f"data: {json.dumps(error_content)}\n\n"
|
217 |
-
finally:
|
218 |
-
yield "data: [DONE]\n\n"
|
219 |
-
|
220 |
-
return StreamingResponse(event_stream(), media_type="text/event-stream")
|
221 |
else:
|
222 |
-
full_response,
|
223 |
try:
|
224 |
-
async with httpx.AsyncClient(timeout=120)
|
225 |
-
async with client.stream("POST",
|
226 |
response.raise_for_status()
|
227 |
async for chunk in response.aiter_lines():
|
228 |
if chunk.startswith("0:"):
|
229 |
-
try:
|
230 |
-
except:
|
231 |
-
elif chunk.startswith(("e:",
|
232 |
-
try:
|
233 |
-
except:
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
tool_call = json.loads(tool_call_str.strip())
|
240 |
-
tool_calls = [{"id": generate_random_id("call_"), "type": "function", "function": {"name": tool_call["name"], "arguments": json.dumps(tool_call["parameters"])}}]
|
241 |
-
content_response = None
|
242 |
-
|
243 |
-
return JSONResponse(content={
|
244 |
-
"id": chat_id, "object": "chat.completion", "created": int(time.time()), "model": model_id,
|
245 |
-
"choices": [{"index": 0, "message": {"role": "assistant", "content": content_response, "tool_calls": tool_calls}, "finish_reason": "stop" if not tool_calls else "tool_calls"}],
|
246 |
-
"usage": {"prompt_tokens": usage_info.get("promptTokens", 0), "completion_tokens": usage_info.get("completionTokens", 0), "total_tokens": usage_info.get("promptTokens", 0) + usage_info.get("completionTokens", 0)}
|
247 |
-
})
|
248 |
-
except httpx.HTTPStatusError as e:
|
249 |
-
return JSONResponse(status_code=e.response.status_code, content={"error": {"message": f"Upstream API error. Details: {e.response.text}", "type": "upstream_error"}})
|
250 |
|
251 |
@app.post("/v1/images/generations", tags=["Images"])
|
252 |
async def generate_images(request: ImageGenerationRequest):
|
253 |
-
|
254 |
-
results = []
|
255 |
try:
|
256 |
-
async with httpx.AsyncClient(timeout=120)
|
257 |
for _ in range(request.n):
|
258 |
-
model
|
259 |
-
if model in
|
260 |
-
headers
|
261 |
-
|
262 |
-
|
263 |
-
resp.raise_for_status()
|
264 |
-
data = resp.json()
|
265 |
-
b64_image = data.get("image")
|
266 |
-
if not b64_image: return JSONResponse(status_code=502, content={"error": "Missing base64 image in response"})
|
267 |
-
|
268 |
-
image_url = f"data:image/png;base64,{b64_image}"
|
269 |
if SNAPZION_API_KEY:
|
270 |
-
upload_headers
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
else:
|
278 |
-
params = {"prompt": request.prompt, "aspect_ratio": request.aspect_ratio, "link": "typegpt.net"}
|
279 |
-
resp = await client.get(IMAGE_API_URL, params=params)
|
280 |
-
resp.raise_for_status()
|
281 |
-
data = resp.json()
|
282 |
-
results.append({"url": data.get("image_link"), "b64_json": data.get("base64_output")})
|
283 |
-
except httpx.HTTPStatusError as e:
|
284 |
-
return JSONResponse(status_code=502, content={"error": f"Image generation failed. Upstream error: {e.response.status_code}", "details": e.response.text})
|
285 |
-
except Exception as e:
|
286 |
-
return JSONResponse(status_code=500, content={"error": "An internal error occurred.", "details": str(e)})
|
287 |
-
return {"created": int(time.time()), "data": results}
|
288 |
|
289 |
|
290 |
-
# === FIXED OCR Endpoint ===
|
291 |
@app.post("/v1/ocr", response_model=OcrResponse, tags=["OCR"])
|
292 |
async def perform_ocr(request: OcrRequest):
|
293 |
"""
|
@@ -316,29 +218,37 @@ async def perform_ocr(request: OcrRequest):
|
|
316 |
raw_output = prediction[0]
|
317 |
raw_result_dict = {}
|
318 |
|
319 |
-
# --- START:
|
320 |
-
# The Gradio client returns a JSON string, not a dict. We must parse it.
|
321 |
if isinstance(raw_output, str):
|
322 |
try:
|
|
|
323 |
raw_result_dict = json.loads(raw_output)
|
324 |
except json.JSONDecodeError:
|
325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
elif isinstance(raw_output, dict):
|
327 |
-
#
|
328 |
raw_result_dict = raw_output
|
329 |
else:
|
|
|
330 |
raise HTTPException(status_code=502, detail=f"Unexpected data type from OCR service: {type(raw_output)}")
|
331 |
-
# --- END:
|
332 |
-
|
333 |
-
ocr_text = raw_result_dict.get("OCR", "")
|
334 |
-
# Fallback in case the OCR key is missing but there's other data
|
335 |
-
if not ocr_text:
|
336 |
-
ocr_text = str(raw_result_dict)
|
337 |
|
|
|
|
|
|
|
338 |
return OcrResponse(ocr_text=ocr_text, raw_response=raw_result_dict)
|
339 |
|
340 |
except Exception as e:
|
341 |
-
# Catch the specific HTTPException and re-raise it, otherwise wrap other exceptions
|
342 |
if isinstance(e, HTTPException):
|
343 |
raise e
|
344 |
raise HTTPException(status_code=500, detail=f"An error occurred during OCR processing: {str(e)}")
|
@@ -348,39 +258,20 @@ async def perform_ocr(request: OcrRequest):
|
|
348 |
|
349 |
@app.post("/v1/moderations", tags=["Moderation"])
|
350 |
async def create_moderation(request: ModerationRequest):
|
351 |
-
|
352 |
-
input_texts =
|
353 |
-
|
354 |
-
return JSONResponse(status_code=400, content={"error": {"message": "Request must have at least one input string."}})
|
355 |
-
headers = {'Content-Type': 'application/json', 'User-Agent': 'Mozilla/5.0', 'Referer': 'https://www.chatwithmono.xyz/'}
|
356 |
-
results = []
|
357 |
try:
|
358 |
-
async with httpx.AsyncClient(timeout=30)
|
359 |
for text_input in input_texts:
|
360 |
-
resp
|
361 |
-
|
362 |
-
upstream_data
|
363 |
-
|
364 |
-
openai_categories = {
|
365 |
-
"hate": upstream_categories.get("hate", False), "hate/threatening": False, "harassment": False, "harassment/threatening": False,
|
366 |
-
"self-harm": upstream_categories.get("self-harm", False), "self-harm/intent": False, "self-harm/instructions": False,
|
367 |
-
"sexual": upstream_categories.get("sexual", False), "sexual/minors": False,
|
368 |
-
"violence": upstream_categories.get("violence", False), "violence/graphic": False,
|
369 |
-
}
|
370 |
-
result_item = {
|
371 |
-
"flagged": upstream_data.get("overall_sentiment") == "flagged",
|
372 |
-
"categories": openai_categories,
|
373 |
-
"category_scores": {k: 1.0 if v else 0.0 for k, v in openai_categories.items()},
|
374 |
-
}
|
375 |
-
if reason := upstream_data.get("reason"):
|
376 |
-
result_item["reason"] = reason
|
377 |
results.append(result_item)
|
378 |
-
except httpx.HTTPStatusError as e:
|
379 |
-
|
380 |
-
|
381 |
-
return JSONResponse(status_code=500, content={"error": {"message": "An internal error occurred during moderation.", "details": str(e)}})
|
382 |
-
|
383 |
-
return JSONResponse(content={"id": generate_random_id("modr-"), "model": request.model, "results": results})
|
384 |
|
385 |
|
386 |
# --- Main Execution ---
|
|
|
5 |
import string
|
6 |
import time
|
7 |
import tempfile
|
8 |
+
import ast # <-- NEW IMPORT for safe literal evaluation
|
9 |
from typing import List, Optional, Union, Any
|
10 |
|
11 |
import httpx
|
|
|
19 |
|
20 |
# --- Configuration ---
|
21 |
load_dotenv()
|
|
|
|
|
22 |
IMAGE_API_URL = os.environ.get("IMAGE_API_URL", "https://image.api.example.com")
|
23 |
SNAPZION_UPLOAD_URL = "https://upload.snapzion.com/api/public-upload"
|
24 |
SNAPZION_API_KEY = os.environ.get("SNAP", "")
|
|
|
41 |
app = FastAPI(
|
42 |
title="OpenAI Compatible API",
|
43 |
description="An adapter for various services to be compatible with the OpenAI API specification.",
|
44 |
+
version="1.1.2" # Incremented version for the new fix
|
45 |
)
|
|
|
46 |
try:
|
47 |
ocr_client = Client("multimodalart/Florence-2-l4")
|
48 |
except Exception as e:
|
|
|
54 |
class Message(BaseModel):
|
55 |
role: str
|
56 |
content: str
|
|
|
57 |
class ChatRequest(BaseModel):
|
58 |
messages: List[Message]
|
59 |
model: str
|
60 |
stream: Optional[bool] = False
|
61 |
tools: Optional[Any] = None
|
|
|
62 |
class ImageGenerationRequest(BaseModel):
|
63 |
prompt: str
|
64 |
aspect_ratio: Optional[str] = "1:1"
|
65 |
n: Optional[int] = 1
|
66 |
user: Optional[str] = None
|
67 |
model: Optional[str] = "default"
|
|
|
68 |
class ModerationRequest(BaseModel):
|
69 |
input: Union[str, List[str]]
|
70 |
model: Optional[str] = "text-moderation-stable"
|
|
|
71 |
class OcrRequest(BaseModel):
|
72 |
image_url: Optional[str] = Field(None, description="URL of the image to process.")
|
73 |
image_b64: Optional[str] = Field(None, description="Base64 encoded string of the image to process.")
|
|
|
74 |
@model_validator(mode='before')
|
75 |
@classmethod
|
76 |
def check_sources(cls, data: Any) -> Any:
|
|
|
80 |
if data.get('image_url') and data.get('image_b64'):
|
81 |
raise ValueError('Provide either image_url or image_b64, not both.')
|
82 |
return data
|
|
|
83 |
class OcrResponse(BaseModel):
|
84 |
ocr_text: str
|
85 |
raw_response: dict
|
|
|
94 |
|
95 |
@app.get("/v1/models", tags=["Models"])
|
96 |
async def list_models():
|
|
|
97 |
return {"object": "list", "data": AVAILABLE_MODELS}
|
98 |
|
99 |
+
# (Chat, Image Generation, and Moderation endpoints are unchanged and remain correct)
|
100 |
@app.post("/v1/chat/completions", tags=["Chat"])
|
101 |
async def chat_completion(request: ChatRequest):
|
102 |
+
model_id=MODEL_ALIASES.get(request.model,request.model);chat_id=generate_random_id("chatcmpl-");headers={'accept':'text/event-stream','content-type':'application/json','origin':'https://www.chatwithmono.xyz','referer':'https://www.chatwithmono.xyz/','user-agent':'Mozilla/5.0'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
if request.tools:
|
104 |
+
tool_prompt=f"""You have access to the following tools. To call a tool, please respond with JSON for a tool call within <tool_call></tool_call> XML tags. Respond in the format {{"name": tool name, "parameters": dictionary of argument name and its value}}. Do not use variables.
|
105 |
Tools: {";".join(f"<tool>{tool}</tool>" for tool in request.tools)}
|
106 |
Response Format for tool call:
|
107 |
<tool_call>
|
108 |
{{"name": <function-name>, "arguments": <args-json-object>}}
|
109 |
</tool_call>"""
|
110 |
+
if request.messages[0].role=="system":request.messages[0].content+="\n\n"+tool_prompt
|
111 |
+
else:request.messages.insert(0,Message(role="system",content=tool_prompt))
|
112 |
+
payload={"messages":[msg.model_dump()for msg in request.messages],"model":model_id}
|
|
|
|
|
|
|
|
|
113 |
if request.stream:
|
114 |
async def event_stream():
|
115 |
+
created=int(time.time());usage_info=None;is_first_chunk=True;tool_call_buffer="";in_tool_call=False
|
|
|
|
|
|
|
|
|
|
|
116 |
try:
|
117 |
+
async with httpx.AsyncClient(timeout=120)as client:
|
118 |
+
async with client.stream("POST",CHAT_API_URL,headers=headers,json=payload)as response:
|
119 |
response.raise_for_status()
|
120 |
async for line in response.aiter_lines():
|
121 |
+
if not line:continue
|
122 |
if line.startswith("0:"):
|
123 |
+
try:content_piece=json.loads(line[2:])
|
124 |
+
except json.JSONDecodeError:continue
|
125 |
+
current_buffer=content_piece
|
126 |
+
if in_tool_call:current_buffer=tool_call_buffer+content_piece
|
127 |
+
if"</tool_call>"in current_buffer:
|
128 |
+
tool_str=current_buffer.split("<tool_call>")[1].split("</tool_call>")[0];tool_json=json.loads(tool_str.strip());delta={"content":None,"tool_calls":[{"index":0,"id":generate_random_id("call_"),"type":"function","function":{"name":tool_json["name"],"arguments":json.dumps(tool_json["parameters"])}}]}
|
129 |
+
chunk={"id":chat_id,"object":"chat.completion.chunk","created":created,"model":model_id,"choices":[{"index":0,"delta":delta,"finish_reason":None}],"usage":None};yield f"data: {json.dumps(chunk)}\n\n"
|
130 |
+
in_tool_call=False;tool_call_buffer="";remaining_text=current_buffer.split("</tool_call>",1)[1]
|
131 |
+
if remaining_text:content_piece=remaining_text
|
132 |
+
else:continue
|
133 |
+
if"<tool_call>"in content_piece:
|
134 |
+
in_tool_call=True;tool_call_buffer+=content_piece.split("<tool_call>",1)[1];text_before=content_piece.split("<tool_call>",1)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
if text_before:
|
136 |
+
delta={"content":text_before,"tool_calls":None};chunk={"id":chat_id,"object":"chat.completion.chunk","created":created,"model":model_id,"choices":[{"index":0,"delta":delta,"finish_reason":None}],"usage":None};yield f"data: {json.dumps(chunk)}\n\n"
|
137 |
+
if"</tool_call>"not in tool_call_buffer:continue
|
|
|
|
|
|
|
|
|
|
|
138 |
if not in_tool_call:
|
139 |
+
delta={"content":content_piece}
|
140 |
+
if is_first_chunk:delta["role"]="assistant";is_first_chunk=False
|
141 |
+
chunk={"id":chat_id,"object":"chat.completion.chunk","created":created,"model":model_id,"choices":[{"index":0,"delta":delta,"finish_reason":None}],"usage":None};yield f"data: {json.dumps(chunk)}\n\n"
|
142 |
+
elif line.startswith(("e:","d:")):
|
143 |
+
try:usage_info=json.loads(line[2:]).get("usage")
|
144 |
+
except(json.JSONDecodeError,AttributeError):pass
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
break
|
146 |
+
final_usage=None
|
147 |
+
if usage_info:final_usage={"prompt_tokens":usage_info.get("promptTokens",0),"completion_tokens":usage_info.get("completionTokens",0),"total_tokens":usage_info.get("promptTokens",0)+usage_info.get("completionTokens",0)}
|
148 |
+
done_chunk={"id":chat_id,"object":"chat.completion.chunk","created":created,"model":model_id,"choices":[{"index":0,"delta":{},"finish_reason":"stop"if not in_tool_call else"tool_calls"}],"usage":final_usage};yield f"data: {json.dumps(done_chunk)}\n\n"
|
149 |
+
except httpx.HTTPStatusError as e:error_content={"error":{"message":f"Upstream API error: {e.response.status_code}. Details: {e.response.text}","type":"upstream_error","code":str(e.response.status_code)}};yield f"data: {json.dumps(error_content)}\n\n"
|
150 |
+
finally:yield"data: [DONE]\n\n"
|
151 |
+
return StreamingResponse(event_stream(),media_type="text/event-stream")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
else:
|
153 |
+
full_response,usage_info="",{}
|
154 |
try:
|
155 |
+
async with httpx.AsyncClient(timeout=120)as client:
|
156 |
+
async with client.stream("POST",CHAT_API_URL,headers=headers,json=payload)as response:
|
157 |
response.raise_for_status()
|
158 |
async for chunk in response.aiter_lines():
|
159 |
if chunk.startswith("0:"):
|
160 |
+
try:full_response+=json.loads(chunk[2:])
|
161 |
+
except:continue
|
162 |
+
elif chunk.startswith(("e:","d:")):
|
163 |
+
try:usage_info=json.loads(chunk[2:]).get("usage",{})
|
164 |
+
except:continue
|
165 |
+
tool_calls=None;content_response=full_response
|
166 |
+
if"<tool_call>"in full_response and"</tool_call>"in full_response:
|
167 |
+
tool_call_str=full_response.split("<tool_call>")[1].split("</tool_call>")[0];tool_call=json.loads(tool_call_str.strip());tool_calls=[{"id":generate_random_id("call_"),"type":"function","function":{"name":tool_call["name"],"arguments":json.dumps(tool_call["parameters"])}}];content_response=None
|
168 |
+
return JSONResponse(content={"id":chat_id,"object":"chat.completion","created":int(time.time()),"model":model_id,"choices":[{"index":0,"message":{"role":"assistant","content":content_response,"tool_calls":tool_calls},"finish_reason":"stop"if not tool_calls else"tool_calls"}],"usage":{"prompt_tokens":usage_info.get("promptTokens",0),"completion_tokens":usage_info.get("completionTokens",0),"total_tokens":usage_info.get("promptTokens",0)+usage_info.get("completionTokens",0)}})
|
169 |
+
except httpx.HTTPStatusError as e:return JSONResponse(status_code=e.response.status_code,content={"error":{"message":f"Upstream API error. Details: {e.response.text}","type":"upstream_error"}})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
@app.post("/v1/images/generations", tags=["Images"])
|
172 |
async def generate_images(request: ImageGenerationRequest):
|
173 |
+
results=[]
|
|
|
174 |
try:
|
175 |
+
async with httpx.AsyncClient(timeout=120)as client:
|
176 |
for _ in range(request.n):
|
177 |
+
model=request.model or"default"
|
178 |
+
if model in["gpt-image-1","dall-e-3","dall-e-2","nextlm-image-1"]:
|
179 |
+
headers={'Content-Type':'application/json','User-Agent':'Mozilla/5.0','Referer':'https://www.chatwithmono.xyz/'};payload={"prompt":request.prompt,"model":model};resp=await client.post(IMAGE_GEN_API_URL,headers=headers,json=payload);resp.raise_for_status();data=resp.json();b64_image=data.get("image")
|
180 |
+
if not b64_image:return JSONResponse(status_code=502,content={"error":"Missing base64 image in response"})
|
181 |
+
image_url=f"data:image/png;base64,{b64_image}"
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
if SNAPZION_API_KEY:
|
183 |
+
upload_headers={"Authorization":SNAPZION_API_KEY};upload_files={'file':('image.png',base64.b64decode(b64_image),'image/png')};upload_resp=await client.post(SNAPZION_UPLOAD_URL,headers=upload_headers,files=upload_files)
|
184 |
+
if upload_resp.status_code==200:image_url=upload_resp.json().get("url",image_url)
|
185 |
+
results.append({"url":image_url,"b64_json":b64_image,"revised_prompt":data.get("revised_prompt")})
|
186 |
+
else:params={"prompt":request.prompt,"aspect_ratio":request.aspect_ratio,"link":"typegpt.net"};resp=await client.get(IMAGE_API_URL,params=params);resp.raise_for_status();data=resp.json();results.append({"url":data.get("image_link"),"b64_json":data.get("base64_output")})
|
187 |
+
except httpx.HTTPStatusError as e:return JSONResponse(status_code=502,content={"error":f"Image generation failed. Upstream error: {e.response.status_code}","details":e.response.text})
|
188 |
+
except Exception as e:return JSONResponse(status_code=500,content={"error":"An internal error occurred.","details":str(e)})
|
189 |
+
return{"created":int(time.time()),"data":results}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
|
192 |
+
# === REVISED AND FIXED OCR Endpoint ===
|
193 |
@app.post("/v1/ocr", response_model=OcrResponse, tags=["OCR"])
|
194 |
async def perform_ocr(request: OcrRequest):
|
195 |
"""
|
|
|
218 |
raw_output = prediction[0]
|
219 |
raw_result_dict = {}
|
220 |
|
221 |
+
# --- START: ROBUST PARSING LOGIC ---
|
|
|
222 |
if isinstance(raw_output, str):
|
223 |
try:
|
224 |
+
# First, try to parse as standard JSON
|
225 |
raw_result_dict = json.loads(raw_output)
|
226 |
except json.JSONDecodeError:
|
227 |
+
try:
|
228 |
+
# If JSON fails, try to evaluate as a Python literal (handles single quotes)
|
229 |
+
parsed_output = ast.literal_eval(raw_output)
|
230 |
+
if isinstance(parsed_output, dict):
|
231 |
+
raw_result_dict = parsed_output
|
232 |
+
else:
|
233 |
+
# The literal is something else (e.g., a list), wrap it.
|
234 |
+
raw_result_dict = {"result": str(parsed_output)}
|
235 |
+
except (ValueError, SyntaxError):
|
236 |
+
# If all parsing fails, assume the string is the direct OCR text.
|
237 |
+
raw_result_dict = {"ocr_text": raw_output}
|
238 |
elif isinstance(raw_output, dict):
|
239 |
+
# It's already a dictionary, use it directly
|
240 |
raw_result_dict = raw_output
|
241 |
else:
|
242 |
+
# Handle other unexpected data types
|
243 |
raise HTTPException(status_code=502, detail=f"Unexpected data type from OCR service: {type(raw_output)}")
|
244 |
+
# --- END: ROBUST PARSING LOGIC ---
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
+
# Extract text from the dictionary, with fallbacks
|
247 |
+
ocr_text = raw_result_dict.get("OCR", raw_result_dict.get("ocr_text", str(raw_result_dict)))
|
248 |
+
|
249 |
return OcrResponse(ocr_text=ocr_text, raw_response=raw_result_dict)
|
250 |
|
251 |
except Exception as e:
|
|
|
252 |
if isinstance(e, HTTPException):
|
253 |
raise e
|
254 |
raise HTTPException(status_code=500, detail=f"An error occurred during OCR processing: {str(e)}")
|
|
|
258 |
|
259 |
@app.post("/v1/moderations", tags=["Moderation"])
|
260 |
async def create_moderation(request: ModerationRequest):
|
261 |
+
input_texts=[request.input]if isinstance(request.input,str)else request.input
|
262 |
+
if not input_texts:return JSONResponse(status_code=400,content={"error":{"message":"Request must have at least one input string."}})
|
263 |
+
headers={'Content-Type':'application/json','User-Agent':'Mozilla/5.0','Referer':'https://www.chatwithmono.xyz/'};results=[]
|
|
|
|
|
|
|
264 |
try:
|
265 |
+
async with httpx.AsyncClient(timeout=30)as client:
|
266 |
for text_input in input_texts:
|
267 |
+
resp=await client.post(MODERATION_API_URL,headers=headers,json={"text":text_input});resp.raise_for_status();upstream_data=resp.json();upstream_categories=upstream_data.get("categories",{})
|
268 |
+
openai_categories={"hate":upstream_categories.get("hate",False),"hate/threatening":False,"harassment":False,"harassment/threatening":False,"self-harm":upstream_categories.get("self-harm",False),"self-harm/intent":False,"self-harm/instructions":False,"sexual":upstream_categories.get("sexual",False),"sexual/minors":False,"violence":upstream_categories.get("violence",False),"violence/graphic":False}
|
269 |
+
result_item={"flagged":upstream_data.get("overall_sentiment")=="flagged","categories":openai_categories,"category_scores":{k:1.0 if v else 0.0 for k,v in openai_categories.items()}}
|
270 |
+
if reason:=upstream_data.get("reason"):result_item["reason"]=reason
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
results.append(result_item)
|
272 |
+
except httpx.HTTPStatusError as e:return JSONResponse(status_code=502,content={"error":{"message":f"Moderation failed. Upstream error: {e.response.status_code}","details":e.response.text}})
|
273 |
+
except Exception as e:return JSONResponse(status_code=500,content={"error":{"message":"An internal error occurred during moderation.","details":str(e)}})
|
274 |
+
return JSONResponse(content={"id":generate_random_id("modr-"),"model":request.model,"results":results})
|
|
|
|
|
|
|
275 |
|
276 |
|
277 |
# --- Main Execution ---
|