Spaces:
Sleeping
Sleeping
File size: 9,570 Bytes
926675f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import requests
from geopy.geocoders import Nominatim
from langchain import OpenAI, LLMMathChain, LLMChain, PromptTemplate, Wikipedia
from langchain.agents import Tool
from langchain.agents.react.base import DocstoreExplorer
from langchain.document_loaders import TextLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.utilities import SerpAPIWrapper
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
from nodes.Node import Node
class GoogleWorker(Node):
def __init__(self, name="Google"):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = False
self.description = "Worker that searches results from Google. Useful when you need to find short " \
"and succinct answers about a specific topic. Input should be a search query."
def run(self, input, log=False):
assert isinstance(input, self.input_type)
tool = SerpAPIWrapper()
evidence = tool.run(input)
assert isinstance(evidence, self.output_type)
if log:
print(f"Running {self.name} with input {input}\nOutput: {evidence}\n")
return evidence
class WikipediaWorker(Node):
def __init__(self, name="Wikipedia", docstore=None):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = False
self.description = "Worker that search for similar page contents from Wikipedia. Useful when you need to " \
"get holistic knowledge about people, places, companies, historical events, " \
"or other subjects. The response are long and might contain some irrelevant information. " \
"Input should be a search query."
self.docstore = docstore
def run(self, input, log=False):
if not self.docstore:
self.docstore = DocstoreExplorer(Wikipedia())
assert isinstance(input, self.input_type)
tool = Tool(
name="Search",
func=self.docstore.search,
description="useful for when you need to ask with search"
)
evidence = tool.run(input)
assert isinstance(evidence, self.output_type)
if log:
print(f"Running {self.name} with input {input}\nOutput: {evidence}\n")
return evidence
class DocStoreLookUpWorker(Node):
def __init__(self, name="LookUp", docstore=None):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = False
self.description = "Worker that search the direct sentence in current Wikipedia result page. Useful when you " \
"need to find information about a specific keyword from a existing Wikipedia search " \
"result. Input should be a search keyword."
self.docstore = docstore
def run(self, input, log=False):
if not self.docstore:
raise ValueError("Docstore must be provided for lookup")
assert isinstance(input, self.input_type)
tool = Tool(
name="Lookup",
func=self.docstore.lookup,
description="useful for when you need to ask with lookup"
)
evidence = tool.run(input)
assert isinstance(evidence, self.output_type)
if log:
print(f"Running {self.name} with input {input}\nOutput: {evidence}\n")
return evidence
class CustomWolframAlphaAPITool(WolframAlphaAPIWrapper):
def __init__(self):
super().__init__()
def run(self, query: str) -> str:
"""Run query through WolframAlpha and parse result."""
res = self.wolfram_client.query(query)
try:
answer = next(res.results).text
except StopIteration:
return "Wolfram Alpha wasn't able to answer it"
if answer is None or answer == "":
return "No good Wolfram Alpha Result was found"
else:
return f"Answer: {answer}"
class WolframAlphaWorker(Node):
def __init__(self, name="WolframAlpha"):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = False
self.description = "A WolframAlpha search engine. Useful when you need to solve a complicated Mathematical or " \
"Algebraic equation. Input should be an equation or function."
def run(self, input, log=False):
assert isinstance(input, self.input_type)
tool = CustomWolframAlphaAPITool()
evidence = tool.run(input).replace("Answer:", "").strip()
assert isinstance(evidence, self.output_type)
if log:
print(f"Running {self.name} with input {input}\nOutput: {evidence}\n")
return evidence
class CalculatorWorker(Node):
def __init__(self, name="Calculator"):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = True
self.description = "A calculator that can compute arithmetic expressions. Useful when you need to perform " \
"math calculations. Input should be a mathematical expression"
def run(self, input, log=False):
assert isinstance(input, self.input_type)
llm = OpenAI(temperature=0)
tool = LLMMathChain(llm=llm, verbose=False)
response = tool(input)
evidence = response["answer"].replace("Answer:", "").strip()
assert isinstance(evidence, self.output_type)
if log:
return {"input": response["question"], "output": response["answer"]}
return evidence
class LLMWorker(Node):
def __init__(self, name="LLM"):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = True
self.description = "A pretrained LLM like yourself. Useful when you need to act with general world " \
"knowledge and common sense. Prioritize it when you are confident in solving the problem " \
"yourself. Input can be any instruction."
def run(self, input, log=False):
assert isinstance(input, self.input_type)
llm = OpenAI(temperature=0)
prompt = PromptTemplate(template="Respond in short directly with no extra words.\n\n{request}",
input_variables=["request"])
tool = LLMChain(prompt=prompt, llm=llm, verbose=False)
response = tool(input)
evidence = response["text"].strip("\n")
assert isinstance(evidence, self.output_type)
if log:
return {"input": response["request"], "output": response["text"]}
return evidence
class ZipCodeRetriever(Node):
def __init__(self, name="ZipCodeRetriever"):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = False
self.description = "A zip code retriever. Useful when you need to get users' current zip code. Input can be " \
"left blank."
def get_ip_address(self):
response = requests.get("https://ipinfo.io/json")
data = response.json()
return data["ip"]
def get_location_data(sefl, ip_address):
url = f"https://ipinfo.io/{ip_address}/json"
response = requests.get(url)
data = response.json()
return data
def get_zipcode_from_lat_long(self, lat, long):
geolocator = Nominatim(user_agent="zipcode_locator")
location = geolocator.reverse((lat, long))
return location.raw["address"]["postcode"]
def get_current_zipcode(self):
ip_address = self.get_ip_address()
location_data = self.get_location_data(ip_address)
lat, long = location_data["loc"].split(",")
zipcode = self.get_zipcode_from_lat_long(float(lat), float(long))
return zipcode
def run(self, input):
assert isinstance(input, self.input_type)
evidence = self.get_current_zipcode()
assert isinstance(evidence, self.output_type)
class SearchDocWorker(Node):
def __init__(self, doc_name, doc_path, name="SearchDoc"):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = True
self.doc_path = doc_path
self.description = f"A vector store that searches for similar and related content in document: {doc_name}. " \
f"The result is a huge chunk of text related to your search but can also " \
f"contain irrelevant info. Input should be a search query."
def run(self, input, log=False):
assert isinstance(input, self.input_type)
loader = TextLoader(self.doc_path)
vectorstore = VectorstoreIndexCreator().from_loaders([loader]).vectorstore
evidence = vectorstore.similarity_search(input, k=1)[0].page_content
assert isinstance(evidence, self.output_type)
if log:
print(f"Running {self.name} with input {input}\nOutput: {evidence}\n")
return evidence
class SearchSOTUWorker(SearchDocWorker):
def __init__(self, name="SearchSOTU"):
super().__init__(name=name, doc_name="state_of_the_union", doc_path="data/docs/state_of_the_union.txt")
WORKER_REGISTRY = {"Google": GoogleWorker(),
"Wikipedia": WikipediaWorker(),
"LookUp": DocStoreLookUpWorker(),
"WolframAlpha": WolframAlphaWorker(),
"Calculator": CalculatorWorker(),
"LLM": LLMWorker(),
"SearchSOTU": SearchSOTUWorker()}
|