Spaces:
AIR-Bench
/
Running on CPU Upgrade

File size: 5,921 Bytes
2d272e2
 
 
 
 
 
 
 
a7c0332
2d272e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import json
from collections import defaultdict
from dataclasses import dataclass
from typing import List, Optional

import pandas as pd

from src.benchmarks import get_safe_name
from src.display.columns import COL_NAME_RETRIEVAL_MODEL, COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL_LINK, \
    COL_NAME_RERANKING_MODEL_LINK, COL_NAME_REVISION, COL_NAME_TIMESTAMP, COL_NAME_IS_ANONYMOUS
from src.display.formatting import make_clickable_model


@dataclass
class EvalResult:
    """
    Evaluation result of a single embedding model with a specific reranking model on benchmarks over different
    domains, languages, and datasets
    """
    eval_name: str  # name of the evaluation, [retrieval_model]_[reranking_model]_[metric]
    retrieval_model: str
    reranking_model: str
    results: list  # results on all the benchmarks stored as dict
    task: str
    metric: str
    timestamp: str = ""  # submission timestamp
    revision: str = ""
    is_anonymous: bool = False


@dataclass
class FullEvalResult:
    """
    Evaluation result of a single embedding model with a specific reranking model on benchmarks over different tasks
    """
    eval_name: str  # name of the evaluation, [retrieval_model]_[reranking_model]
    retrieval_model: str
    reranking_model: str
    retrieval_model_link: str
    reranking_model_link: str
    results: List[EvalResult]  # results on all the EvalResults over different tasks and metrics.
    timestamp: str = ""
    revision: str = ""
    is_anonymous: bool = False

    @classmethod
    def init_from_json_file(cls, json_filepath):
        """
        Initiate from the result json file for a single model.
        The json file will be written only when the status is FINISHED.
        """
        with open(json_filepath) as fp:
            model_data = json.load(fp)

        # store all the results for different metrics and tasks
        result_list = []
        retrieval_model_link = ""
        reranking_model_link = ""
        revision = ""
        for item in model_data:
            config = item.get("config", {})
            # eval results for different metrics
            results = item.get("results", [])
            retrieval_model_link = config["retrieval_model_link"]
            if config["reranking_model_link"] is None:
                reranking_model_link = ""
            else:
                reranking_model_link = config["reranking_model_link"]
            eval_result = EvalResult(
                eval_name=f"{config['retrieval_model']}_{config['reranking_model']}_{config['metric']}",
                retrieval_model=config["retrieval_model"],
                reranking_model=config["reranking_model"],
                results=results,
                task=config["task"],
                metric=config["metric"],
                timestamp=config.get("timestamp", "2024-05-12T12:24:02Z"),
                revision=config.get("revision", "3a2ba9dcad796a48a02ca1147557724e"),
                is_anonymous=config.get("is_anonymous", False)
            )
            result_list.append(eval_result)
        return cls(
            eval_name=f"{result_list[0].retrieval_model}_{result_list[0].reranking_model}",
            retrieval_model=result_list[0].retrieval_model,
            reranking_model=result_list[0].reranking_model,
            retrieval_model_link=retrieval_model_link,
            reranking_model_link=reranking_model_link,
            results=result_list,
            timestamp=result_list[0].timestamp,
            revision=result_list[0].revision,
            is_anonymous=result_list[0].is_anonymous
        )

    def to_dict(self, task='qa', metric='ndcg_at_3') -> List:
        """
        Convert the results in all the EvalResults over different tasks and metrics. The output is a list of dict compatible with the dataframe UI
        """
        results = defaultdict(dict)
        for eval_result in self.results:
            if eval_result.metric != metric:
                continue
            if eval_result.task != task:
                continue
            results[eval_result.eval_name]["eval_name"] = eval_result.eval_name
            results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL] = (
                make_clickable_model(self.retrieval_model, self.retrieval_model_link))
            results[eval_result.eval_name][COL_NAME_RERANKING_MODEL] = (
                make_clickable_model(self.reranking_model, self.reranking_model_link))
            results[eval_result.eval_name][COL_NAME_RETRIEVAL_MODEL_LINK] = self.retrieval_model_link
            results[eval_result.eval_name][COL_NAME_RERANKING_MODEL_LINK] = self.reranking_model_link
            results[eval_result.eval_name][COL_NAME_REVISION] = self.revision
            results[eval_result.eval_name][COL_NAME_TIMESTAMP] = self.timestamp
            results[eval_result.eval_name][COL_NAME_IS_ANONYMOUS] = self.is_anonymous

            # print(f'result loaded: {eval_result.eval_name}')
            for result in eval_result.results:
                # add result for each domain, language, and dataset
                domain = result["domain"]
                lang = result["lang"]
                dataset = result["dataset"]
                value = result["value"] * 100
                if dataset == 'default':
                    benchmark_name = f"{domain}_{lang}"
                else:
                    benchmark_name = f"{domain}_{lang}_{dataset}"
                results[eval_result.eval_name][get_safe_name(benchmark_name)] = value
        return [v for v in results.values()]


@dataclass
class LeaderboardDataStore:
    raw_data: Optional[list]
    raw_df_qa: Optional[pd.DataFrame]
    raw_df_long_doc: Optional[pd.DataFrame]
    leaderboard_df_qa: Optional[pd.DataFrame]
    leaderboard_df_long_doc: Optional[pd.DataFrame]
    reranking_models: Optional[list]
    types_qa: Optional[list]
    types_long_doc: Optional[list]