Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,426 Bytes
f766ce9 982af90 f766ce9 982af90 f766ce9 8a1daf9 f766ce9 b9d42b4 f766ce9 b9d42b4 ca2a141 b9d42b4 ca2a141 b9d42b4 ca2a141 b9d42b4 f766ce9 b9d42b4 ca2a141 b9d42b4 36c5a0c b9d42b4 ca2a141 b9d42b4 f766ce9 b9d42b4 ca2a141 b9d42b4 ca2a141 51dbe36 ca2a141 51dbe36 2dca7ce 51dbe36 ca2a141 b9d42b4 ca2a141 51dbe36 b9d42b4 f766ce9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
# Your leaderboard name
TITLE = """<h1 align="center" id="space-title">AIR-Bench: Automated Heterogeneous Information Retrieval Benchmark
(Preview) </h1>"""
# What does your leaderboard evaluate?
INTRODUCTION_TEXT = """
Check more information at [our GitHub repo](https://github.com/AIR-Bench/AIR-Bench)
"""
# Which evaluations are you running? how can people reproduce what you have?
BENCHMARKS_TEXT = f"""
## How it works
Check more information at [our GitHub repo](https://github.com/AIR-Bench/AIR-Bench)
"""
EVALUATION_QUEUE_TEXT = """
## Steps for submit to AIR-Bench
1. Install AIR-Bench
```bash
# Clone the repo
git clone https://github.com/AIR-Bench/AIR-Bench.git
# Install the package
cd AIR-Bench
pip install .
```
2. Run the evaluation script
```bash
cd AIR-Bench/scripts
# Run all tasks
python run_AIR-Bench.py \\
--output_dir ./search_results \\
--encoder BAAI/bge-m3 \
--reranker BAAI/bge-reranker-v2-m3 \\
--search_top_k 1000 \\
--rerank_top_k 100 \\
--max_query_length 512 \\
--max_passage_length 512 \\
--batch_size 512 \\
--pooling_method cls \\
--normalize_embeddings True \\
--use_fp16 True \\
--add_instruction False \\
--overwrite False
# Run the tasks in the specified task type
python run_AIR-Bench.py \\
--task_types long-doc \\
--output_dir ./search_results \\
--encoder BAAI/bge-m3 \\
--reranker BAAI/bge-reranker-v2-m3 \\
--search_top_k 1000 \\
--rerank_top_k 100 \\
--max_query_length 512 \\
--max_passage_length 512 \\
--batch_size 512 \\
--pooling_method cls \\
--normalize_embeddings True \\
--use_fp16 True \\
--add_instruction False \\
--overwrite False
# Run the tasks in the specified task type and domains
python run_AIR-Bench.py \\
--task_types long-doc \\
--domains arxiv book \\
--output_dir ./search_results \\
--encoder BAAI/bge-m3 \\
--reranker BAAI/bge-reranker-v2-m3 \\
--search_top_k 1000 \\
--rerank_top_k 100 \\
--max_query_length 512 \\
--max_passage_length 512 \\
--batch_size 512 \\
--pooling_method cls \\
--normalize_embeddings True \\
--use_fp16 True \\
--add_instruction False \\
--overwrite False
# Run the tasks in the specified languages
python run_AIR-Bench.py \\
--languages en \\
--output_dir ./search_results \\
--encoder BAAI/bge-m3 \\
--reranker BAAI/bge-reranker-v2-m3 \\
--search_top_k 1000 \\
--rerank_top_k 100 \\
--max_query_length 512 \\
--max_passage_length 512 \\
--batch_size 512 \\
--pooling_method cls \\
--normalize_embeddings True \\
--use_fp16 True \\
--add_instruction False \\
--overwrite False
# Run the tasks in the specified task type, domains, and languages
python run_AIR-Bench.py \\
--task_types qa \\
--domains wiki web \\
--languages en \\
--output_dir ./search_results \\
--encoder BAAI/bge-m3 \\
--encoder_link https://huggingface.co/BAAI/bge-m3 \\
--reranker BAAI/bge-reranker-v2-m3 \\
--reranker_link https://huggingface.co/BAAI/bge-reranker-v2-m3 \\
--search_top_k 1000 \\
--rerank_top_k 100 \\
--max_query_length 512 \\
--max_passage_length 512 \\
--batch_size 512 \\
--pooling_method cls \\
--normalize_embeddings True \\
--use_fp16 True \\
--add_instruction False \\
--overwrite False
```
3. Package the search results.
```bash
# Zip "Embedding Model + NoReranker" search results in "<search_results>/<model_name>/NoReranker" to "<save_dir>/<model_name>_NoReranker.zip".
python zip_results.py \\
--results_dir search_results \\
--model_name bge-m3 \\
--save_dir search_results/zipped_results
# Zip "Embedding Model + Reranker" search results in "<search_results>/<model_name>/<reranker_name>" to "<save_dir>/<model_name>_<reranker_name>.zip".
python zip_results.py \\
--results_dir search_results \\
--model_name bge-m3 \\
--reranker_name bge-reranker-v2-m3 \\
--save_dir search_results/zipped_results
```
4. Upload the `.zip` file on this page and fill in the model information:
- Model Name: such as `bge-m3`.
- Model URL: such as `https://huggingface.co/BAAI/bge-m3`.
- Reranker Name: such as `bge-reranker-v2-m3`. Keep empty for `NoReranker`.
- Reranker URL: such as `https://huggingface.co/BAAI/bge-reranker-v2-m3`. Keep empty for `NoReranker`.
If you want to stay anonymous, you can only fill in the Model Name and Reranker Name (keep empty for `NoReranker`), and check the selection box below befor submission.
5. Congratulation! Your results will be shown on the leaderboard in up to one hour.
"""
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""
"""
|