Spaces:
AIR-Bench
/
Running on CPU Upgrade

File size: 3,189 Bytes
f766ce9
 
 
 
 
 
3d59d51
57ca843
 
f766ce9
 
9c49811
f766ce9
 
1e768ec
3d59d51
 
9c49811
f766ce9
1e768ec
f766ce9
1e768ec
e8879cc
 
9c49811
 
e8879cc
 
f766ce9
 
e8879cc
f766ce9
 
 
 
8b7a945
f766ce9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import json
import os

import pandas as pd

from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumnQA, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results, EvalResult
from typing import Tuple


def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list, task: str, metric: str) -> Tuple[list[EvalResult], pd.DataFrame]:
    """Creates a dataframe from all the individual experiment results"""
    raw_data = get_raw_eval_results(results_path, requests_path)
    print(f"raw_data loaded: {len(raw_data)}")
    all_data_json = []
    for v in raw_data:
        all_data_json += v.to_dict(task=task, metric=metric)

    print(f'records loaded: {len(all_data_json)}')
    df = pd.DataFrame.from_records(all_data_json)
    print(f'dataframe created: {df.shape}')
    _benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
    df[AutoEvalColumnQA.average.name] = df[list(_benchmark_cols)].mean(axis=1)
    df = df.sort_values(by=[AutoEvalColumnQA.average.name], ascending=False)
    df.reset_index(inplace=True)
    _cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
    df = df[_cols].round(decimals=2)

    # filter out if any of the benchmarks have not been produced
    df = df[has_no_nan_values(df, _benchmark_cols)]
    return raw_data, df


def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
    """Creates the different dataframes for the evaluation queues requests"""
    entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
    all_evals = []

    for entry in entries:
        if ".json" in entry:
            file_path = os.path.join(save_path, entry)
            with open(file_path) as fp:
                data = json.load(fp)

            data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
            data[EvalQueueColumn.revision.name] = data.get("revision", "main")

            all_evals.append(data)
        elif ".md" not in entry:
            # this is a folder
            sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
            for sub_entry in sub_entries:
                file_path = os.path.join(save_path, entry, sub_entry)
                with open(file_path) as fp:
                    data = json.load(fp)

                data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
                data[EvalQueueColumn.revision.name] = data.get("revision", "main")
                all_evals.append(data)

    pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
    running_list = [e for e in all_evals if e["status"] == "RUNNING"]
    finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
    df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
    df_running = pd.DataFrame.from_records(running_list, columns=cols)
    df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
    return df_finished[cols], df_running[cols], df_pending[cols]