Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 3,189 Bytes
f766ce9 3d59d51 57ca843 f766ce9 9c49811 f766ce9 1e768ec 3d59d51 9c49811 f766ce9 1e768ec f766ce9 1e768ec e8879cc 9c49811 e8879cc f766ce9 e8879cc f766ce9 8b7a945 f766ce9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import json
import os
import pandas as pd
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumnQA, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results, EvalResult
from typing import Tuple
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list, task: str, metric: str) -> Tuple[list[EvalResult], pd.DataFrame]:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_eval_results(results_path, requests_path)
print(f"raw_data loaded: {len(raw_data)}")
all_data_json = []
for v in raw_data:
all_data_json += v.to_dict(task=task, metric=metric)
print(f'records loaded: {len(all_data_json)}')
df = pd.DataFrame.from_records(all_data_json)
print(f'dataframe created: {df.shape}')
_benchmark_cols = frozenset(benchmark_cols).intersection(frozenset(df.columns.to_list()))
df[AutoEvalColumnQA.average.name] = df[list(_benchmark_cols)].mean(axis=1)
df = df.sort_values(by=[AutoEvalColumnQA.average.name], ascending=False)
df.reset_index(inplace=True)
_cols = frozenset(cols).intersection(frozenset(df.columns.to_list()))
df = df[_cols].round(decimals=2)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, _benchmark_cols)]
return raw_data, df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requests"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]
|