Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
File size: 6,797 Bytes
3478401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
from pathlib import Path
import pandas as pd
import pytest
from src.columns import COL_NAME_RERANKING_MODEL, COL_NAME_RETRIEVAL_MODEL
from src.models import TaskType, model_hyperlink
from src.utils import (
_update_df_elem,
calculate_mean,
filter_models,
filter_queries,
get_default_cols,
get_leaderboard_df,
get_selected_cols,
remove_html,
select_columns,
)
cur_fp = Path(__file__)
NUM_QA_BENCHMARKS_24_05 = 53
NUM_DOC_BENCHMARKS_24_05 = 11
NUM_QA_BENCHMARKS_24_04 = 13
NUM_DOC_BENCHMARKS_24_04 = 15
@pytest.fixture
def toy_df():
return pd.DataFrame(
{
"Retrieval Method": ["bge-m3", "bge-m3", "jina-embeddings-v2-base", "jina-embeddings-v2-base"],
"Reranking Model": ["bge-reranker-v2-m3", "NoReranker", "bge-reranker-v2-m3", "NoReranker"],
"Rank 🏆": [1, 2, 3, 4],
"Revision": ["123", "234", "345", "456"],
"Submission Date": ["", "", "", ""],
"Average ⬆️": [0.6, 0.4, 0.3, 0.2],
"wiki_en": [0.8, 0.7, 0.2, 0.1],
"wiki_zh": [0.4, 0.1, 0.4, 0.3],
"news_en": [0.8, 0.7, 0.2, 0.1],
"news_zh": [0.4, 0.1, 0.2, 0.3],
"Anonymous Submission": [False, False, False, True],
}
)
def test_remove_html():
model_name = "jina-embeddings-v3"
html_str = model_hyperlink("https://jina.ai", model_name)
output_str = remove_html(html_str)
assert output_str == model_name
def test_calculate_mean():
valid_row = [1, 3]
invalid_row = [2, pd.NA]
df = pd.DataFrame([valid_row, invalid_row], columns=["a", "b"])
result = list(df.apply(calculate_mean, axis=1))
assert result[0] == sum(valid_row) / 2
assert result[1] == -1
@pytest.mark.parametrize(
"models, expected",
[
(["model1", "model3"], 2),
(["model1", "model_missing"], 1),
(["model1", "model2", "model3"], 3),
(
[
"model1",
],
1,
),
([], 3),
],
)
def test_filter_models(models, expected):
df = pd.DataFrame(
{
COL_NAME_RERANKING_MODEL: [
"model1",
"model2",
"model3",
],
"col2": [1, 2, 3],
}
)
output_df = filter_models(df, models)
assert len(output_df) == expected
@pytest.mark.parametrize(
"query, expected",
[
("model1;model3", 2),
("model1;model4", 1),
("model1;model2;model3", 3),
("model1", 1),
("", 3),
],
)
def test_filter_queries(query, expected):
df = pd.DataFrame(
{
COL_NAME_RETRIEVAL_MODEL: [
"model1",
"model2",
"model3",
],
COL_NAME_RERANKING_MODEL: [
"model4",
"model5",
"model6",
],
}
)
output_df = filter_queries(query, df)
assert len(output_df) == expected
@pytest.mark.parametrize(
"task_type, slug, add_fix_cols, expected",
[
(TaskType.qa, "air_bench_2404", True, NUM_QA_BENCHMARKS_24_04),
(TaskType.long_doc, "air_bench_2404", True, NUM_DOC_BENCHMARKS_24_04),
(TaskType.qa, "air_bench_2405", False, NUM_QA_BENCHMARKS_24_05),
(TaskType.long_doc, "air_bench_2405", False, NUM_DOC_BENCHMARKS_24_05),
],
)
def test_get_default_cols(task_type, slug, add_fix_cols, expected):
attr_cols = ["Rank 🏆", "Retrieval Method", "Reranking Model", "Revision", "Submission Date", "Average ⬆️"]
cols, types = get_default_cols(task_type, slug)
cols_set = frozenset(cols)
attrs_set = frozenset(attr_cols)
if add_fix_cols:
assert attrs_set.issubset(cols_set)
benchmark_cols = list(cols_set.difference(attrs_set))
assert len(benchmark_cols) == expected
@pytest.mark.parametrize(
"task_type, domains, languages, expected",
[
(
TaskType.qa,
["wiki", "news"],
[
"zh",
],
["wiki_zh", "news_zh"],
),
(
TaskType.qa,
[
"law",
],
["zh", "en"],
["law_en"],
),
(
TaskType.long_doc,
["healthcare"],
["zh", "en"],
[
"healthcare_en_pubmed_100k_200k_1",
"healthcare_en_pubmed_100k_200k_2",
"healthcare_en_pubmed_100k_200k_3",
"healthcare_en_pubmed_40k_50k_5_merged",
"healthcare_en_pubmed_30k_40k_10_merged",
],
),
],
)
def test_get_selected_cols(task_type, domains, languages, expected):
slug = "air_bench_2404"
cols = get_selected_cols(task_type, slug, domains, languages)
assert sorted(cols) == sorted(expected)
@pytest.mark.parametrize("reset_rank", [False])
def test_select_columns(toy_df, reset_rank):
expected = [
"Rank 🏆",
"Retrieval Method",
"Reranking Model",
"Revision",
"Submission Date",
"Average ⬆️",
"news_zh",
]
df_result = select_columns(toy_df, ["news"], ["zh"], version_slug="air_bench_2404", reset_ranking=reset_rank)
assert len(df_result.columns) == len(expected)
if reset_rank:
assert df_result["Average ⬆️"].equals(df_result["news_zh"])
else:
assert df_result["Average ⬆️"].equals(toy_df["Average ⬆️"])
@pytest.mark.parametrize(
"reset_rank, show_anony",
[
(False, True),
(True, True),
(True, False),
],
)
def test__update_df_elem(toy_df, reset_rank, show_anony):
df = _update_df_elem(TaskType.qa, "AIR-Bench_24.04", toy_df, ["news"], ["zh"], [], "", show_anony, reset_rank)
if show_anony:
assert df.shape[0] == 4
else:
assert df.shape[0] == 3
if show_anony:
if reset_rank:
assert df["Average ⬆️"].equals(df["news_zh"])
else:
assert df["Average ⬆️"].equals(toy_df["Average ⬆️"])
@pytest.mark.parametrize(
"version, task_type",
[
("AIR-Bench_24.04", TaskType.qa),
("AIR-Bench_24.04", TaskType.long_doc),
("AIR-Bench_24.05", TaskType.qa),
("AIR-Bench_24.05", TaskType.long_doc),
],
)
def test_get_leaderboard_df(version, task_type):
from src.loaders import load_raw_eval_results
from src.models import LeaderboardDataStore, get_safe_name
raw_data = load_raw_eval_results(cur_fp.parents[1] / f"toydata/eval_results/{version}")
ds = LeaderboardDataStore(version, get_safe_name(version), raw_data=raw_data)
df = get_leaderboard_df(ds, task_type, "ndcg_at_10")
assert df.shape[0] == 1
|